Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Oct;81(4):2278–2296. doi: 10.1016/S0006-3495(01)75875-4

Nonlinear myofilament regulatory processes affect frequency-dependent muscle fiber stiffness.

K B Campbell 1, M V Razumova 1, R D Kirkpatrick 1, B K Slinker 1
PMCID: PMC1301699  PMID: 11566798

Abstract

To investigate the role of nonlinear myofilament regulatory processes in sarcomeric mechanodynamics, a model of myofilament kinetic processes, including thin filament on-off kinetics and crossbridge cycling kinetics with interactions within and between kinetic processes, was built to predict sarcomeric stiffness dynamics. Linear decomposition of this highly nonlinear model resulted in the identification of distinct contributions by kinetics of recruitment and by kinetics of distortion to the complex stiffness of the sarcomere. Further, it was established that nonlinear kinetic processes, such as those associated with cooperative neighbor interactions or length-dependent crossbridge attachment, contributed unique features to the stiffness spectrum through their effect on recruitment. Myofilament model-derived sarcomeric stiffness reproduces experimentally measured sarcomeric stiffness with remarkable fidelity. Consequently, characteristic features of the experimentally determined stiffness spectrum become interpretable in terms of the underlying contractile mechanisms that are responsible for specific dynamic behaviors.

Full Text

The Full Text of this article is available as a PDF (191.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott R. H., Steiger G. J. Temperature and amplitude dependence of tension transients in glycerinated skeletal and insect fibrillar muscle. J Physiol. 1977 Mar;266(1):13–42. doi: 10.1113/jphysiol.1977.sp011754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berman M. R., Peterson J. N., Yue D. T., Hunter W. C. Effect of isoproterenol on force transient time course and on stiffness spectra in rabbit papillary muscle in barium contracture. J Mol Cell Cardiol. 1988 May;20(5):415–426. doi: 10.1016/s0022-2828(88)80133-0. [DOI] [PubMed] [Google Scholar]
  3. Blanchard E., Seidman C., Seidman J. G., LeWinter M., Maughan D. Altered crossbridge kinetics in the alphaMHC403/+ mouse model of familial hypertrophic cardiomyopathy. Circ Res. 1999 Mar 5;84(4):475–483. doi: 10.1161/01.res.84.4.475. [DOI] [PubMed] [Google Scholar]
  4. Campbell K. B., Razumova M. V., Kirkpatrick R. D., Slinker B. K. Myofilament kinetics in isometric twitch dynamics. Ann Biomed Eng. 2001 May;29(5):384–405. doi: 10.1114/1.1366669. [DOI] [PubMed] [Google Scholar]
  5. Campbell K. B., Taheri H., Kirkpatrick R. D., Burton T., Hunter W. C. Similarities between dynamic elastance of left ventricular chamber and papillary muscle of rabbit heart. Am J Physiol. 1993 Jun;264(6 Pt 2):H1926–H1941. doi: 10.1152/ajpheart.1993.264.6.H1926. [DOI] [PubMed] [Google Scholar]
  6. Campbell K. Rate constant of muscle force redevelopment reflects cooperative activation as well as cross-bridge kinetics. Biophys J. 1997 Jan;72(1):254–262. doi: 10.1016/S0006-3495(97)78664-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dickinson M. H., Hyatt C. J., Lehmann F. O., Moore J. R., Reedy M. C., Simcox A., Tohtong R., Vigoreaux J. O., Yamashita H., Maughan D. W. Phosphorylation-dependent power output of transgenic flies: an integrated study. Biophys J. 1997 Dec;73(6):3122–3134. doi: 10.1016/S0006-3495(97)78338-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fuchs F., Smith S. H. Calcium, cross-bridges, and the Frank-Starling relationship. News Physiol Sci. 2001 Feb;16:5–10. doi: 10.1152/physiologyonline.2001.16.1.5. [DOI] [PubMed] [Google Scholar]
  9. Godt R. E., Maughan D. W. Influence of osmotic compression on calcium activation and tension in skinned muscle fibers of the rabbit. Pflugers Arch. 1981 Oct;391(4):334–337. doi: 10.1007/BF00581519. [DOI] [PubMed] [Google Scholar]
  10. HUXLEY A. F. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318. [PubMed] [Google Scholar]
  11. Huxley A. F., Simmons R. M. Proposed mechanism of force generation in striated muscle. Nature. 1971 Oct 22;233(5321):533–538. doi: 10.1038/233533a0. [DOI] [PubMed] [Google Scholar]
  12. Kawai M., Brandt P. W. Sinusoidal analysis: a high resolution method for correlating biochemical reactions with physiological processes in activated skeletal muscles of rabbit, frog and crayfish. J Muscle Res Cell Motil. 1980 Sep;1(3):279–303. doi: 10.1007/BF00711932. [DOI] [PubMed] [Google Scholar]
  13. Kawai M., Halvorson H. R. Role of MgATP and MgADP in the cross-bridge kinetics in chemically skinned rabbit psoas fibers. Study of a fast exponential process (C) Biophys J. 1989 Apr;55(4):595–603. doi: 10.1016/S0006-3495(89)82857-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kawai M., Saeki Y., Zhao Y. Crossbridge scheme and the kinetic constants of elementary steps deduced from chemically skinned papillary and trabecular muscles of the ferret. Circ Res. 1993 Jul;73(1):35–50. doi: 10.1161/01.res.73.1.35. [DOI] [PubMed] [Google Scholar]
  15. MACHIN K. E., PRINGLE J. W. The physiology of insect fibrillar muscle. III. The effect of sinusoidal changes of length on a beetle flight muscle. Proc R Soc Lond B Biol Sci. 1960 Jun 14;152:311–330. doi: 10.1098/rspb.1960.0041. [DOI] [PubMed] [Google Scholar]
  16. Maughan D., Moore J., Vigoreaux J., Barnes B., Mulieri L. A. Work production and work absorption in muscle strips from vertebrate cardiac and insect flight muscle fibers. Adv Exp Med Biol. 1998;453:471–480. doi: 10.1007/978-1-4684-6039-1_52. [DOI] [PubMed] [Google Scholar]
  17. McDonald K. S., Moss R. L. Osmotic compression of single cardiac myocytes eliminates the reduction in Ca2+ sensitivity of tension at short sarcomere length. Circ Res. 1995 Jul;77(1):199–205. doi: 10.1161/01.res.77.1.199. [DOI] [PubMed] [Google Scholar]
  18. Murase M., Tanaka H., Nishiyama K., Shimizu H. A three-state model for oscillation in muscle: sinusoidal analysis. J Muscle Res Cell Motil. 1986 Feb;7(1):2–10. doi: 10.1007/BF01756196. [DOI] [PubMed] [Google Scholar]
  19. Pringle J. W. The Croonian Lecture, 1977. Stretch activation of muscle: function and mechanism. Proc R Soc Lond B Biol Sci. 1978 May 5;201(1143):107–130. doi: 10.1098/rspb.1978.0035. [DOI] [PubMed] [Google Scholar]
  20. Razumova M. V., Bukatina A. E., Campbell K. B. Different myofilament nearest-neighbor interactions have distinctive effects on contractile behavior. Biophys J. 2000 Jun;78(6):3120–3137. doi: 10.1016/S0006-3495(00)76849-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Razumova M. V., Bukatina A. E., Campbell K. B. Stiffness-distortion sarcomere model for muscle simulation. J Appl Physiol (1985) 1999 Nov;87(5):1861–1876. doi: 10.1152/jappl.1999.87.5.1861. [DOI] [PubMed] [Google Scholar]
  22. Rossmanith G. H., Hoh J. F., Kirman A., Kwan L. J. Influence of V1 and V3 isomyosins on the mechanical behaviour of rat papillary muscle as studied by pseudo-random binary noise modulated length perturbations. J Muscle Res Cell Motil. 1986 Aug;7(4):307–319. doi: 10.1007/BF01753651. [DOI] [PubMed] [Google Scholar]
  23. Saeki Y., Kawai M., Zhao Y. Comparison of crossbridge dynamics between intact and skinned myocardium from ferret right ventricles. Circ Res. 1991 Mar;68(3):772–781. doi: 10.1161/01.res.68.3.772. [DOI] [PubMed] [Google Scholar]
  24. Shibata T., Hunter W. C., Sagawa K. Dynamic stiffness of barium-contractured cardiac muscles with different speeds of contraction. Circ Res. 1987 May;60(5):770–779. doi: 10.1161/01.res.60.5.770. [DOI] [PubMed] [Google Scholar]
  25. Smith D. A. The theory of sliding filament models for muscle contraction. III. Dynamics of the five-state model. J Theor Biol. 1990 Oct 21;146(4):433–466. doi: 10.1016/s0022-5193(05)80372-8. [DOI] [PubMed] [Google Scholar]
  26. Steiger G. J. Stretch activation and myogenic oscillation of isolated contractile structures of heart muscle. Pflugers Arch. 1971;330(4):347–361. doi: 10.1007/BF00588586. [DOI] [PubMed] [Google Scholar]
  27. Thomas N., Thornhill R. A. Stretch activation and nonlinear elasticity of muscle cross-bridges. Biophys J. 1996 Jun;70(6):2807–2818. doi: 10.1016/S0006-3495(96)79850-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Thorson J., White D. C. Role of cross-bridge distortion in the small-signal mechanical dynamics of insect and rabbit striated muscle. J Physiol. 1983 Oct;343:59–84. doi: 10.1113/jphysiol.1983.sp014881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wannenburg T., Heijne G. H., Geerdink J. H., Van Den Dool H. W., Janssen P. M., De Tombe P. P. Cross-bridge kinetics in rat myocardium: effect of sarcomere length and calcium activation. Am J Physiol Heart Circ Physiol. 2000 Aug;279(2):H779–H790. doi: 10.1152/ajpheart.2000.279.2.H779. [DOI] [PubMed] [Google Scholar]
  30. Zhao Y., Kawai M. Inotropic agent EMD-53998 weakens nucleotide and phosphate binding to cross bridges in porcine myocardium. Am J Physiol. 1996 Oct;271(4 Pt 2):H1394–H1406. doi: 10.1152/ajpheart.1996.271.4.H1394. [DOI] [PubMed] [Google Scholar]
  31. Zhao Y., Kawai M. The effect of the lattice spacing change on cross-bridge kinetics in chemically skinned rabbit psoas muscle fibers. II. Elementary steps affected by the spacing change. Biophys J. 1993 Jan;64(1):197–210. doi: 10.1016/S0006-3495(93)81357-2. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES