Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Oct;81(4):2297–2313. doi: 10.1016/S0006-3495(01)75876-6

Titin-actin interaction in mouse myocardium: passive tension modulation and its regulation by calcium/S100A1.

R Yamasaki 1, M Berri 1, Y Wu 1, K Trombitás 1, M McNabb 1, M S Kellermayer 1, C Witt 1, D Labeit 1, S Labeit 1, M Greaser 1, H Granzier 1
PMCID: PMC1301700  PMID: 11566799

Abstract

Passive tension in striated muscles derives primarily from the extension of the giant protein titin. However, several studies have suggested that, in cardiac muscle, interactions between titin and actin might also contribute to passive tension. We expressed recombinant fragments representing the subdomains of the extensible region of cardiac N2B titin (tandem-Ig segments, the N2B splice element, and the PEVK domain), and assayed them for binding to F-actin. The PEVK fragment bound F-actin, but no binding was detected for the other fragments. Comparison with a skeletal muscle PEVK fragment revealed that only the cardiac PEVK binds actin at physiological ionic strengths. The significance of PEVK-actin interaction was investigated using in vitro motility and single-myocyte mechanics. As F-actin slid relative to titin in the motility assay, a dynamic interaction between the PEVK domain and F-actin retarded filament sliding. Myocyte results suggest that a similar interaction makes a significant contribution to the passive tension. We also investigated the effect of calcium on PEVK-actin interaction. Although calcium alone had no effect, S100A1, a soluble calcium-binding protein found at high concentrations in the myocardium, inhibited PEVK-actin interaction in a calcium-dependent manner. Gel overlay analysis revealed that S100A1 bound the PEVK region in vitro in a calcium-dependent manner, and S100A1 binding was observed at several sites along titin's extensible region in situ, including the PEVK domain. In vitro motility results indicate that S100A1-PEVK interaction reduces the force that arises as F-actin slides relative to the PEVK domain, and we speculate that S100A1 may provide a mechanism to free the thin filament from titin and reduce titin-based tension before active contraction.

Full Text

The Full Text of this article is available as a PDF (889.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baudier J., Glasser N., Gerard D. Ions binding to S100 proteins. I. Calcium- and zinc-binding properties of bovine brain S100 alpha alpha, S100a (alpha beta), and S100b (beta beta) protein: Zn2+ regulates Ca2+ binding on S100b protein. J Biol Chem. 1986 Jun 25;261(18):8192–8203. [PubMed] [Google Scholar]
  2. Baudier J., Mochly-Rosen D., Newton A., Lee S. H., Koshland D. E., Jr, Cole R. D. Comparison of S100b protein with calmodulin: interactions with melittin and microtubule-associated tau proteins and inhibition of phosphorylation of tau proteins by protein kinase C. Biochemistry. 1987 May 19;26(10):2886–2893. doi: 10.1021/bi00384a033. [DOI] [PubMed] [Google Scholar]
  3. Bers D. M. Calcium fluxes involved in control of cardiac myocyte contraction. Circ Res. 2000 Aug 18;87(4):275–281. doi: 10.1161/01.res.87.4.275. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Cazorla O., Freiburg A., Helmes M., Centner T., McNabb M., Wu Y., Trombitás K., Labeit S., Granzier H. Differential expression of cardiac titin isoforms and modulation of cellular stiffness. Circ Res. 2000 Jan 7;86(1):59–67. doi: 10.1161/01.res.86.1.59. [DOI] [PubMed] [Google Scholar]
  6. Chang C. T., Wu C. S., Yang J. T. Circular dichroic analysis of protein conformation: inclusion of the beta-turns. Anal Biochem. 1978 Nov;91(1):13–31. doi: 10.1016/0003-2697(78)90812-6. [DOI] [PubMed] [Google Scholar]
  7. Fabiato A. Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands. Methods Enzymol. 1988;157:378–417. doi: 10.1016/0076-6879(88)57093-3. [DOI] [PubMed] [Google Scholar]
  8. Freiburg A., Trombitas K., Hell W., Cazorla O., Fougerousse F., Centner T., Kolmerer B., Witt C., Beckmann J. S., Gregorio C. C. Series of exon-skipping events in the elastic spring region of titin as the structural basis for myofibrillar elastic diversity. Circ Res. 2000 Jun 9;86(11):1114–1121. doi: 10.1161/01.res.86.11.1114. [DOI] [PubMed] [Google Scholar]
  9. Freudenrich C. C., Murphy E., Liu S., Lieberman M. Magnesium homeostasis in cardiac cells. Mol Cell Biochem. 1992 Sep 8;114(1-2):97–103. doi: 10.1007/BF00240303. [DOI] [PubMed] [Google Scholar]
  10. Friederich E., Vancompernolle K., Huet C., Goethals M., Finidori J., Vandekerckhove J., Louvard D. An actin-binding site containing a conserved motif of charged amino acid residues is essential for the morphogenic effect of villin. Cell. 1992 Jul 10;70(1):81–92. doi: 10.1016/0092-8674(92)90535-k. [DOI] [PubMed] [Google Scholar]
  11. Fulgenzi G., Graciotti L., Granata A. L., Corsi A., Fucini P., Noegel A. A., Kent H. M., Stewart M. Location of the binding site of the mannose-specific lectin comitin on F-actin. J Mol Biol. 1998 Dec 18;284(5):1255–1263. doi: 10.1006/jmbi.1998.2294. [DOI] [PubMed] [Google Scholar]
  12. Funatsu T., Kono E., Higuchi H., Kimura S., Ishiwata S., Yoshioka T., Maruyama K., Tsukita S. Elastic filaments in situ in cardiac muscle: deep-etch replica analysis in combination with selective removal of actin and myosin filaments. J Cell Biol. 1993 Feb;120(3):711–724. doi: 10.1083/jcb.120.3.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Garbuglia M., Verzini M., Hofmann A., Huber R., Donato R. S100A1 and S100B interactions with annexins. Biochim Biophys Acta. 2000 Dec 20;1498(2-3):192–206. doi: 10.1016/s0167-4889(00)00096-3. [DOI] [PubMed] [Google Scholar]
  14. Garbuglia M., Verzini M., Rustandi R. R., Osterloh D., Weber D. J., Gerke V., Donato R. Role of the C-terminal extension in the interaction of S100A1 with GFAP, tubulin, the S100A1- and S100B-inhibitory peptide, TRTK-12, and a peptide derived from p53, and the S100A1 inhibitory effect on GFAP polymerization. Biochem Biophys Res Commun. 1999 Jan 8;254(1):36–41. doi: 10.1006/bbrc.1998.9881. [DOI] [PubMed] [Google Scholar]
  15. Gordon A. M., LaMadrid M. A., Chen Y., Luo Z., Chase P. B. Calcium regulation of skeletal muscle thin filament motility in vitro. Biophys J. 1997 Mar;72(3):1295–1307. doi: 10.1016/S0006-3495(97)78776-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Granzier H. L., Irving T. C. Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments. Biophys J. 1995 Mar;68(3):1027–1044. doi: 10.1016/S0006-3495(95)80278-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Granzier H. L., Wang K. Gel electrophoresis of giant proteins: solubilization and silver-staining of titin and nebulin from single muscle fiber segments. Electrophoresis. 1993 Jan-Feb;14(1-2):56–64. doi: 10.1002/elps.1150140110. [DOI] [PubMed] [Google Scholar]
  18. Granzier H., Helmes M., Trombitás K. Nonuniform elasticity of titin in cardiac myocytes: a study using immunoelectron microscopy and cellular mechanics. Biophys J. 1996 Jan;70(1):430–442. doi: 10.1016/S0006-3495(96)79586-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Granzier H., Kellermayer M., Helmes M., Trombitás K. Titin elasticity and mechanism of passive force development in rat cardiac myocytes probed by thin-filament extraction. Biophys J. 1997 Oct;73(4):2043–2053. doi: 10.1016/S0006-3495(97)78234-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Greaser M. L., Wang S. M., Berri M., Mozdziak P., Kumazawa Y. Sequence and mechanical implications of titin's PEVK region. Adv Exp Med Biol. 2000;481:53-63; discussion 64-6, 107-10. doi: 10.1007/978-1-4615-4267-4_4. [DOI] [PubMed] [Google Scholar]
  21. Greaser M. Identification of new repeating motifs in titin. Proteins. 2001 May 1;43(2):145–149. doi: 10.1002/1097-0134(20010501)43:2<145::aid-prot1026>3.0.co;2-b. [DOI] [PubMed] [Google Scholar]
  22. Gregorio C. C., Granzier H., Sorimachi H., Labeit S. Muscle assembly: a titanic achievement? Curr Opin Cell Biol. 1999 Feb;11(1):18–25. doi: 10.1016/s0955-0674(99)80003-9. [DOI] [PubMed] [Google Scholar]
  23. Gutierrez-Cruz G., Van Heerden A. H., Wang K. Modular motif, structural folds and affinity profiles of the PEVK segment of human fetal skeletal muscle titin. J Biol Chem. 2000 Nov 17;276(10):7442–7449. doi: 10.1074/jbc.M008851200. [DOI] [PubMed] [Google Scholar]
  24. Haimoto H., Kato K. S100a0 (alpha alpha) protein in cardiac muscle. Isolation from human cardiac muscle and ultrastructural localization. Eur J Biochem. 1988 Jan 15;171(1-2):409–415. doi: 10.1111/j.1432-1033.1988.tb13805.x. [DOI] [PubMed] [Google Scholar]
  25. Haimoto H., Kato K. S100a0 (alpha alpha) protein, a calcium-binding protein, is localized in the slow-twitch muscle fiber. J Neurochem. 1987 Mar;48(3):917–923. doi: 10.1111/j.1471-4159.1987.tb05604.x. [DOI] [PubMed] [Google Scholar]
  26. Heierhorst J., Kobe B., Feil S. C., Parker M. W., Benian G. M., Weiss K. R., Kemp B. E. Ca2+/S100 regulation of giant protein kinases. Nature. 1996 Apr 18;380(6575):636–639. doi: 10.1038/380636a0. [DOI] [PubMed] [Google Scholar]
  27. Helmes M., Trombitás K., Centner T., Kellermayer M., Labeit S., Linke W. A., Granzier H. Mechanically driven contour-length adjustment in rat cardiac titin's unique N2B sequence: titin is an adjustable spring. Circ Res. 1999 Jun 11;84(11):1339–1352. doi: 10.1161/01.res.84.11.1339. [DOI] [PubMed] [Google Scholar]
  28. Homsher E., Wang F., Sellers J. Factors affecting filament velocity in in vitro motility assays and their relation to unloaded shortening velocity in muscle fibers. Adv Exp Med Biol. 1993;332:279–290. doi: 10.1007/978-1-4615-2872-2_27. [DOI] [PubMed] [Google Scholar]
  29. Ivanenkov V. V., Dimlich R. V., Jamieson G. A., Jr Interaction of S100a0 protein with the actin capping protein, CapZ: characterization of a putative S100a0 binding site in CapZ alpha-subunit. Biochem Biophys Res Commun. 1996 Apr 5;221(1):46–50. doi: 10.1006/bbrc.1996.0542. [DOI] [PubMed] [Google Scholar]
  30. Jin J. P. Cloned rat cardiac titin class I and class II motifs. Expression, purification, characterization, and interaction with F-actin. J Biol Chem. 1995 Mar 24;270(12):6908–6916. [PubMed] [Google Scholar]
  31. Kabsch W., Mannherz H. G., Suck D., Pai E. F., Holmes K. C. Atomic structure of the actin:DNase I complex. Nature. 1990 Sep 6;347(6288):37–44. doi: 10.1038/347037a0. [DOI] [PubMed] [Google Scholar]
  32. Kato K., Kimura S. S100ao (alpha alpha) protein is mainly located in the heart and striated muscles. Biochim Biophys Acta. 1985 Oct 17;842(2-3):146–150. doi: 10.1016/0304-4165(85)90196-5. [DOI] [PubMed] [Google Scholar]
  33. Kellermayer M. S., Granzier H. L. Calcium-dependent inhibition of in vitro thin-filament motility by native titin. FEBS Lett. 1996 Feb 19;380(3):281–286. doi: 10.1016/0014-5793(96)00055-5. [DOI] [PubMed] [Google Scholar]
  34. Kellermayer M. S., Granzier H. L. Elastic properties of single titin molecules made visible through fluorescent F-actin binding. Biochem Biophys Res Commun. 1996 Apr 25;221(3):491–497. doi: 10.1006/bbrc.1996.0624. [DOI] [PubMed] [Google Scholar]
  35. Kellermayer M. S., Smith S. B., Granzier H. L., Bustamante C. Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science. 1997 May 16;276(5315):1112–1116. doi: 10.1126/science.276.5315.1112. [DOI] [PubMed] [Google Scholar]
  36. Kimura S., Maruyama K., Huang Y. P. Interactions of muscle beta-connectin with myosin, actin, and actomyosin at low ionic strengths. J Biochem. 1984 Aug;96(2):499–506. doi: 10.1093/oxfordjournals.jbchem.a134862. [DOI] [PubMed] [Google Scholar]
  37. Kincaid R. L., Billingsley M. L., Vaughan M. Preparation of fluorescent, cross-linking, and biotinylated calmodulin derivatives and their use in studies of calmodulin-activated phosphodiesterase and protein phosphatase. Methods Enzymol. 1988;159:605–626. doi: 10.1016/0076-6879(88)59058-4. [DOI] [PubMed] [Google Scholar]
  38. Kron S. J., Toyoshima Y. Y., Uyeda T. Q., Spudich J. A. Assays for actin sliding movement over myosin-coated surfaces. Methods Enzymol. 1991;196:399–416. doi: 10.1016/0076-6879(91)96035-p. [DOI] [PubMed] [Google Scholar]
  39. Labeit S., Kolmerer B., Linke W. A. The giant protein titin. Emerging roles in physiology and pathophysiology. Circ Res. 1997 Feb;80(2):290–294. doi: 10.1161/01.res.80.2.290. [DOI] [PubMed] [Google Scholar]
  40. Labeit S., Kolmerer B. Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science. 1995 Oct 13;270(5234):293–296. doi: 10.1126/science.270.5234.293. [DOI] [PubMed] [Google Scholar]
  41. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  42. Li Q., Jin J. P., Granzier H. L. The effect of genetically expressed cardiac titin fragments on in vitro actin motility. Biophys J. 1995 Oct;69(4):1508–1518. doi: 10.1016/S0006-3495(95)80021-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Linke W. A., Ivemeyer M., Labeit S., Hinssen H., Rüegg J. C., Gautel M. Actin-titin interaction in cardiac myofibrils: probing a physiological role. Biophys J. 1997 Aug;73(2):905–919. doi: 10.1016/S0006-3495(97)78123-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Linke W. A., Ivemeyer M., Mundel P., Stockmeier M. R., Kolmerer B. Nature of PEVK-titin elasticity in skeletal muscle. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8052–8057. doi: 10.1073/pnas.95.14.8052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Linke W. A., Rudy D. E., Centner T., Gautel M., Witt C., Labeit S., Gregorio C. C. I-band titin in cardiac muscle is a three-element molecular spring and is critical for maintaining thin filament structure. J Cell Biol. 1999 Aug 9;146(3):631–644. doi: 10.1083/jcb.146.3.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Linke W. A., Stockmeier M. R., Ivemeyer M., Hosser H., Mundel P. Characterizing titin's I-band Ig domain region as an entropic spring. J Cell Sci. 1998 Jun;111(Pt 11):1567–1574. doi: 10.1242/jcs.111.11.1567. [DOI] [PubMed] [Google Scholar]
  47. Ma K., Kan L., Wang K. Polyproline II helix is a key structural motif of the elastic PEVK segment of titin. Biochemistry. 2001 Mar 27;40(12):3427–3438. doi: 10.1021/bi0022792. [DOI] [PubMed] [Google Scholar]
  48. Mandinova A., Atar D., Schäfer B. W., Spiess M., Aebi U., Heizmann C. W. Distinct subcellular localization of calcium binding S100 proteins in human smooth muscle cells and their relocation in response to rises in intracellular calcium. J Cell Sci. 1998 Jul 30;111(Pt 14):2043–2054. doi: 10.1242/jcs.111.14.2043. [DOI] [PubMed] [Google Scholar]
  49. Margossian S. S., Lowey S. Preparation of myosin and its subfragments from rabbit skeletal muscle. Methods Enzymol. 1982;85(Pt B):55–71. doi: 10.1016/0076-6879(82)85009-x. [DOI] [PubMed] [Google Scholar]
  50. Maughan D. W., Godt R. E. Equilibrium distribution of ions in a muscle fiber. Biophys J. 1989 Oct;56(4):717–722. doi: 10.1016/S0006-3495(89)82719-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Meyer M., Keweloh B., Güth K., Holmes J. W., Pieske B., Lehnart S. E., Just H., Hasenfuss G. Frequency-dependence of myocardial energetics in failing human myocardium as quantified by a new method for the measurement of oxygen consumption in muscle strip preparations. J Mol Cell Cardiol. 1998 Aug;30(8):1459–1470. doi: 10.1006/jmcc.1998.0706. [DOI] [PubMed] [Google Scholar]
  52. O'Neil K. T., DeGrado W. F. How calmodulin binds its targets: sequence independent recognition of amphiphilic alpha-helices. Trends Biochem Sci. 1990 Feb;15(2):59–64. doi: 10.1016/0968-0004(90)90177-d. [DOI] [PubMed] [Google Scholar]
  53. Obermann W. M., Gautel M., Weber K., Fürst D. O. Molecular structure of the sarcomeric M band: mapping of titin and myosin binding domains in myomesin and the identification of a potential regulatory phosphorylation site in myomesin. EMBO J. 1997 Jan 15;16(2):211–220. doi: 10.1093/emboj/16.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Pardee J. D., Spudich J. A. Purification of muscle actin. Methods Enzymol. 1982;85(Pt B):164–181. doi: 10.1016/0076-6879(82)85020-9. [DOI] [PubMed] [Google Scholar]
  55. Pfuhl M., Winder S. J., Pastore A. Nebulin, a helical actin binding protein. EMBO J. 1994 Apr 15;13(8):1782–1789. doi: 10.1002/j.1460-2075.1994.tb06446.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Politou A. S., Gautel M., Pfuhl M., Labeit S., Pastore A. Immunoglobulin-type domains of titin: same fold, different stability? Biochemistry. 1994 Apr 19;33(15):4730–4737. doi: 10.1021/bi00181a604. [DOI] [PubMed] [Google Scholar]
  57. Politou A. S., Thomas D. J., Pastore A. The folding and stability of titin immunoglobulin-like modules, with implications for the mechanism of elasticity. Biophys J. 1995 Dec;69(6):2601–2610. doi: 10.1016/S0006-3495(95)80131-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Silverman H. S., Di Lisa F., Hui R. C., Miyata H., Sollott S. J., Hanford R. G., Lakatta E. G., Stern M. D. Regulation of intracellular free Mg2+ and contraction in single adult mammalian cardiac myocytes. Am J Physiol. 1994 Jan;266(1 Pt 1):C222–C233. doi: 10.1152/ajpcell.1994.266.1.C222. [DOI] [PubMed] [Google Scholar]
  59. Stapley B. J., Creamer T. P. A survey of left-handed polyproline II helices. Protein Sci. 1999 Mar;8(3):587–595. doi: 10.1110/ps.8.3.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Stuyvers B. D., Miura M., Jin J. P., ter Keurs H. E. Ca(2+)-dependence of diastolic properties of cardiac sarcomeres: involvement of titin. Prog Biophys Mol Biol. 1998;69(2-3):425–443. doi: 10.1016/s0079-6107(98)00018-2. [DOI] [PubMed] [Google Scholar]
  61. Stuyvers B. D., Miura M., ter Keurs H. E. Ca(2+)-dependence of passive properties of cardiac sarcomeres. Adv Exp Med Biol. 2000;481:353–370. [PubMed] [Google Scholar]
  62. Stuyvers B. D., Miura M., ter Keurs H. E. Diastolic viscoelastic properties of rat cardiac muscle; involvement of Ca2+. Adv Exp Med Biol. 1997;430:13–28. doi: 10.1007/978-1-4615-5959-7_2. [DOI] [PubMed] [Google Scholar]
  63. Stuyvers B. D., Miura M., ter Keurs H. E. Dynamics of viscoelastic properties of rat cardiac sarcomeres during the diastolic interval: involvement of Ca2+. J Physiol. 1997 Aug 1;502(Pt 3):661–677. doi: 10.1111/j.1469-7793.1997.661bj.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Treves S., Scutari E., Robert M., Groh S., Ottolia M., Prestipino G., Ronjat M., Zorzato F. Interaction of S100A1 with the Ca2+ release channel (ryanodine receptor) of skeletal muscle. Biochemistry. 1997 Sep 23;36(38):11496–11503. doi: 10.1021/bi970160w. [DOI] [PubMed] [Google Scholar]
  65. Trinick J., Tskhovrebova L. Titin: a molecular control freak. Trends Cell Biol. 1999 Oct;9(10):377–380. doi: 10.1016/s0962-8924(99)01641-4. [DOI] [PubMed] [Google Scholar]
  66. Trombitás K., Freiburg A., Centner T., Labeit S., Granzier H. Molecular dissection of N2B cardiac titin's extensibility. Biophys J. 1999 Dec;77(6):3189–3196. doi: 10.1016/S0006-3495(99)77149-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Trombitás K., Granzier H. Actin removal from cardiac myocytes shows that near Z line titin attaches to actin while under tension. Am J Physiol. 1997 Aug;273(2 Pt 1):C662–C670. doi: 10.1152/ajpcell.1997.273.2.C662. [DOI] [PubMed] [Google Scholar]
  68. Trombitás K., Greaser M., Labeit S., Jin J. P., Kellermayer M., Helmes M., Granzier H. Titin extensibility in situ: entropic elasticity of permanently folded and permanently unfolded molecular segments. J Cell Biol. 1998 Feb 23;140(4):853–859. doi: 10.1083/jcb.140.4.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Trombitás K., Redkar A., Centner T., Wu Y., Labeit S., Granzier H. Extensibility of isoforms of cardiac titin: variation in contour length of molecular subsegments provides a basis for cellular passive stiffness diversity. Biophys J. 2000 Dec;79(6):3226–3234. doi: 10.1016/S0006-3495(00)76555-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Wang K. Titin/connectin and nebulin: giant protein rulers of muscle structure and function. Adv Biophys. 1996;33:123–134. [PubMed] [Google Scholar]
  71. Wang S. M., Greaser M. L. Immunocytochemical studies using a monoclonal antibody to bovine cardiac titin on intact and extracted myofibrils. J Muscle Res Cell Motil. 1985 Jun;6(3):293–312. doi: 10.1007/BF00713171. [DOI] [PubMed] [Google Scholar]
  72. Williamson M. P. The structure and function of proline-rich regions in proteins. Biochem J. 1994 Jan 15;297(Pt 2):249–260. doi: 10.1042/bj2970249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Witt C. C., Olivieri N., Centner T., Kolmerer B., Millevoi S., Morell J., Labeit D., Labeit S., Jockusch H., Pastore A. A survey of the primary structure and the interspecies conservation of I-band titin's elastic elements in vertebrates. J Struct Biol. 1998;122(1-2):206–215. doi: 10.1006/jsbi.1998.3993. [DOI] [PubMed] [Google Scholar]
  74. Wolska B. M., Solaro R. J. Method for isolation of adult mouse cardiac myocytes for studies of contraction and microfluorimetry. Am J Physiol. 1996 Sep;271(3 Pt 2):H1250–H1255. doi: 10.1152/ajpheart.1996.271.3.H1250. [DOI] [PubMed] [Google Scholar]
  75. Wu Y., Cazorla O., Labeit D., Labeit S., Granzier H. Changes in titin and collagen underlie diastolic stiffness diversity of cardiac muscle. J Mol Cell Cardiol. 2000 Dec;32(12):2151–2162. doi: 10.1006/jmcc.2000.1281. [DOI] [PubMed] [Google Scholar]
  76. Zahn R., von Schroetter C., Wüthrich K. Human prion proteins expressed in Escherichia coli and purified by high-affinity column refolding. FEBS Lett. 1997 Nov 17;417(3):400–404. doi: 10.1016/s0014-5793(97)01330-6. [DOI] [PubMed] [Google Scholar]
  77. Zhao L., Naber N., Cooke R. Muscle cross-bridges bound to actin are disordered in the presence of 2,3-butanedione monoxime. Biophys J. 1995 May;68(5):1980–1990. doi: 10.1016/S0006-3495(95)80375-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Zimmer D. B. Examination of the calcium-modulated protein S100 alpha and its target proteins in adult and developing skeletal muscle. Cell Motil Cytoskeleton. 1991;20(4):325–337. doi: 10.1002/cm.970200408. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES