Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Oct;81(4):2320–2330. doi: 10.1016/S0006-3495(01)75878-X

Steady-state and time-resolved fluorescence studies on wild type and mutant chromatium vinosum high potential iron proteins: holo- and apo-forms.

A K Sau 1, C A Chen 1, J A Cowan 1, S Mazumdar 1, S Mitra 1
PMCID: PMC1301702  PMID: 11566801

Abstract

Detailed circular dichroism (CD), steady-state and time-resolved tryptophan fluorescence studies on the holo- and apo- forms of high potential iron protein (HiPIP) from Chromatium vinosum and its mutant protein have been carried out to investigate conformational properties of the protein. CD studies showed that the protein does not have any significant secondary structure elements in the holo- or apo- HiPIP, indicating that the metal cluster does not have any effect on formation of secondary structure in the protein. Steady-state fluorescence quenching studies however, suggested that removal of the iron-sulfur ([Fe(4)S(4)](3+)) cluster from the protein leads to an increase in the solvent accessibility of tryptophans, indicating change in the tertiary structure of the protein. CD studies on the holo- and apo- HiPIP also showed that removal of the metal prosthetic group drastically affects the tertiary structure of the protein. Time-resolved fluorescence decay of the wild type protein was fitted to a four-exponentials model and that of the W80N mutant was fitted to a three-exponentials model. The time-resolved fluorescence decay was also analyzed by maximum entropy method (MEM). The results of the MEM analysis agreed with those obtained from discrete exponentials model analysis. Studies on the wild type and mutants helped to assign the fast picosecond lifetime component to the W80 residue, which exhibits fast fluorescence energy transfer to the [Fe(4)S(4)](3+) cluster of the protein. Decay-associated fluorescence spectra of each tryptophan residues were calculated from the time-resolved fluorescence results at different emission wavelengths. The results suggested that W80 is in the hydrophobic core of the protein, but W60 and W76 are partially or completely exposed to the solvent.

Full Text

The Full Text of this article is available as a PDF (160.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agarwal A., Li D., Cowan J. A. Role of aromatic residues in stabilization of the [Fe4S4] cluster in high-potential iron proteins (HiPIPs): physical characterization and stability studies of Tyr-19 mutants of Chromatium vinosum HiPIP. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9440–9444. doi: 10.1073/pnas.92.21.9440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Agarwal A., Tan J., Eren M., Tevelev A., Lui S. M., Cowan J. A. Synthesis, cloning and expression of a synthetic gene for high potential iron protein from Chromatium vinosum. Biochem Biophys Res Commun. 1993 Dec 30;197(3):1357–1362. doi: 10.1006/bbrc.1993.2626. [DOI] [PubMed] [Google Scholar]
  3. Beechem J. M., Brand L. Time-resolved fluorescence of proteins. Annu Rev Biochem. 1985;54:43–71. doi: 10.1146/annurev.bi.54.070185.000355. [DOI] [PubMed] [Google Scholar]
  4. Brahms S., Brahms J. Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism. J Mol Biol. 1980 Apr;138(2):149–178. doi: 10.1016/0022-2836(80)90282-x. [DOI] [PubMed] [Google Scholar]
  5. Böhm G., Muhr R., Jaenicke R. Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Eng. 1992 Apr;5(3):191–195. doi: 10.1093/protein/5.3.191. [DOI] [PubMed] [Google Scholar]
  6. Chang C. H., Ballinger M. D., Reed G. H., Frey P. A. Lysine 2,3-aminomutase: rapid mix-freeze-quench electron paramagnetic resonance studies establishing the kinetic competence of a substrate-based radical intermediate. Biochemistry. 1996 Aug 27;35(34):11081–11084. doi: 10.1021/bi960850k. [DOI] [PubMed] [Google Scholar]
  7. Chattopadhyay K., Mazumdar S. Structural and conformational stability of horseradish peroxidase: effect of temperature and pH. Biochemistry. 2000 Jan 11;39(1):263–270. doi: 10.1021/bi990729o. [DOI] [PubMed] [Google Scholar]
  8. Cunningham R. P., Asahara H., Bank J. F., Scholes C. P., Salerno J. C., Surerus K., Münck E., McCracken J., Peisach J., Emptage M. H. Endonuclease III is an iron-sulfur protein. Biochemistry. 1989 May 16;28(10):4450–4455. doi: 10.1021/bi00436a049. [DOI] [PubMed] [Google Scholar]
  9. Dahms T. E., Szabo A. G. Conformational heterogeneity in crystalline proteins: time-resolved fluorescence studies. Methods Enzymol. 1997;278:202–221. doi: 10.1016/s0076-6879(97)78012-1. [DOI] [PubMed] [Google Scholar]
  10. Das T. K., Mazumdar S. pH-induced conformational perturbation in horseradish peroxidase. Picosecond tryptophan fluorescence studies on native and cyanide-modified enzymes. Eur J Biochem. 1995 Feb 1;227(3):823–828. doi: 10.1111/j.1432-1033.1995.tb20207.x. [DOI] [PubMed] [Google Scholar]
  11. Godik V. I., Blankenship R. E., Causgrove T. P., Woodbury N. Time-resolved tryptophan fluorescence in photosynthetic reaction centers from Rhodobacter sphaeroides. FEBS Lett. 1993 Apr 26;321(2-3):229–232. doi: 10.1016/0014-5793(93)80114-a. [DOI] [PubMed] [Google Scholar]
  12. Haile D. J., Rouault T. A., Harford J. B., Kennedy M. C., Blondin G. A., Beinert H., Klausner R. D. Cellular regulation of the iron-responsive element binding protein: disassembly of the cubane iron-sulfur cluster results in high-affinity RNA binding. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11735–11739. doi: 10.1073/pnas.89.24.11735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hochkoeppler A., Kofod P., Ferro G., Ciurli S. Isolation, characterization, and functional role of the high-potential iron-sulfur protein (HiPIP) from Rhodoferax fermentans. Arch Biochem Biophys. 1995 Oct 1;322(2):313–318. doi: 10.1006/abbi.1995.1469. [DOI] [PubMed] [Google Scholar]
  14. Hochkoeppler A., Kofod P., Zannoni D. HiPiP oxido-reductase activity in membranes from aerobically grown cells of the facultative phototroph Rhodoferax fermentans. FEBS Lett. 1995 Nov 20;375(3):197–200. doi: 10.1016/0014-5793(95)01188-k. [DOI] [PubMed] [Google Scholar]
  15. Hochkoeppler A., Zannoni D., Ciurli S., Meyer T. E., Cusanovich M. A., Tollin G. Kinetics of photo-induced electron transfer from high-potential iron-sulfur protein to the photosynthetic reaction center of the purple phototroph Rhodoferax fermentans. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):6998–7002. doi: 10.1073/pnas.93.14.6998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hochstrasser R. M., Negus D. K. Picosecond fluorescence decay of tryptophans in myoglobin. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4399–4403. doi: 10.1073/pnas.81.14.4399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kennedy M. C., Mende-Mueller L., Blondin G. A., Beinert H. Purification and characterization of cytosolic aconitase from beef liver and its relationship to the iron-responsive element binding protein. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11730–11734. doi: 10.1073/pnas.89.24.11730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kennel S. J., Bartsch R. G., Kamen M. D. Observations on light-induced oxidation reactions in the electron transport system of Chromatium. Biophys J. 1972 Jul;12(7):882–896. doi: 10.1016/S0006-3495(72)86131-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kerfeld C. A., Chan C., Hirasawa M., Kleis-SanFrancisco S., Yeates T. O., Knaff D. B. Isolation and characterization of soluble electron transfer proteins from Chromatium purpuratum. Biochemistry. 1996 Jun 18;35(24):7812–7818. doi: 10.1021/bi952731v. [DOI] [PubMed] [Google Scholar]
  20. Khan K. K., Mazumdar S., Modi S., Sutcliffe M., Roberts G. C., Mitra S. Steady-state and picosecond-time-resolved fluorescence studies on the recombinant heme domain of Bacillus megaterium cytochrome P-450. Eur J Biochem. 1997 Mar 1;244(2):361–370. doi: 10.1111/j.1432-1033.1997.00361.x. [DOI] [PubMed] [Google Scholar]
  21. Külzer R., Pils T., Kappl R., Hüttermann J., Knappe J. Reconstitution and characterization of the polynuclear iron-sulfur cluster in pyruvate formate-lyase-activating enzyme. Molecular properties of the holoenzyme form. J Biol Chem. 1998 Feb 27;273(9):4897–4903. doi: 10.1074/jbc.273.9.4897. [DOI] [PubMed] [Google Scholar]
  22. Li Dawei, Agarwal Anshu, Cowan J. A. Evaluation of Solvent Accessibility to the [Fe(4)S(4)] Binding Pocket in Native and Tyr19 Mutant High Potential Iron Proteins by (1)H-(15)N HMQC and (19)F NMR Experiments. Inorg Chem. 1996 Feb 28;35(5):1121–1125. doi: 10.1021/ic951160s. [DOI] [PubMed] [Google Scholar]
  23. Michaels M. L., Pham L., Nghiem Y., Cruz C., Miller J. H. MutY, an adenine glycosylase active on G-A mispairs, has homology to endonuclease III. Nucleic Acids Res. 1990 Jul 11;18(13):3841–3845. doi: 10.1093/nar/18.13.3841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Parisini E., Capozzi F., Lubini P., Lamzin V., Luchinat C., Sheldrick G. M. Ab initio solution and refinement of two high-potential iron protein structures at atomic resolution. Acta Crystallogr D Biol Crystallogr. 1999 Nov;55(Pt 11):1773–1784. doi: 10.1107/s0907444999009129. [DOI] [PubMed] [Google Scholar]
  25. Prince R. C., Grossman M. J. Novel iron-sulfur clusters. Trends Biochem Sci. 1993 May;18(5):153–154. doi: 10.1016/0968-0004(93)90101-r. [DOI] [PubMed] [Google Scholar]
  26. Przysiecki C. T., Meyer T. E., Cusanovich M. A. Circular dichroism and redox properties of high redox potential ferredoxins. Biochemistry. 1985 May 7;24(10):2542–2549. doi: 10.1021/bi00331a022. [DOI] [PubMed] [Google Scholar]
  27. Robbins D. J., Deibel M. R., Jr, Barkley M. D. Tryptophan fluorescence of terminal deoxynucleotidyl transferase: effects of quenchers on time-resolved emission spectra. Biochemistry. 1985 Dec 3;24(25):7250–7257. doi: 10.1021/bi00346a034. [DOI] [PubMed] [Google Scholar]
  28. Rouault T. A., Stout C. D., Kaptain S., Harford J. B., Klausner R. D. Structural relationship between an iron-regulated RNA-binding protein (IRE-BP) and aconitase: functional implications. Cell. 1991 Mar 8;64(5):881–883. doi: 10.1016/0092-8674(91)90312-m. [DOI] [PubMed] [Google Scholar]
  29. Switzer R. L. Non-redox roles for iron-sulfur clusters in enzymes. Biofactors. 1989 Dec;2(2):77–86. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES