Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Oct;81(4):2339–2343. doi: 10.1016/S0006-3495(01)75880-8

The inverse relationship between protein dynamics and thermal stability.

A M Tsai 1, T J Udovic 1, D A Neumann 1
PMCID: PMC1301704  PMID: 11566803

Abstract

Protein powders that are dehydrated or mixed with a glassy compound are known to have improved thermal stability. We present elastic and quasielastic neutron scattering measurements of the global dynamics of lysozyme and ribonuclease A powders. In the absence of solvation water, both protein powders exhibit largely harmonic motions on the timescale of the measurements. Upon partial hydration, quasielastic scattering indicative of relaxational processes appears at sufficiently high temperature. When the scattering spectrum are analyzed with the Kohlrausch-Williams-Watts formalism, the exponent beta decreases with increasing temperature, suggesting that multiple relaxation modes are emerging. When lysozyme was mixed with glycerol, its beta values were higher than the hydrated sample at comparable temperatures, reflecting the viscosity and stabilizing effects of glycerol.

Full Text

The Full Text of this article is available as a PDF (65.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreani C., Filabozzi A., Menzinger F., Desideri A., Deriu A., Di Cola D. Dynamics of hydrogen atoms in superoxide dismutase by quasielastic neutron scattering. Biophys J. 1995 Jun;68(6):2519–2523. doi: 10.1016/S0006-3495(95)80434-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bell L. N., Hageman M. J., Bauer J. M. Impact of moisture on thermally induced denaturation and decomposition of lyophilized bovine somatotropin. Biopolymers. 1995 Feb;35(2):201–209. doi: 10.1002/bip.360350208. [DOI] [PubMed] [Google Scholar]
  3. Bell L. N., Hageman M. J., Muraoka L. M. Thermally induced denaturation of lyophilized bovine somatotropin and lysozyme as impacted by moisture and excipients. J Pharm Sci. 1995 Jun;84(6):707–712. doi: 10.1002/jps.2600840608. [DOI] [PubMed] [Google Scholar]
  4. Cusack S., Smith J., Finney J., Tidor B., Karplus M. Inelastic neutron scattering analysis of picosecond internal protein dynamics. Comparison of harmonic theory with experiment. J Mol Biol. 1988 Aug 20;202(4):903–908. doi: 10.1016/0022-2836(88)90566-9. [DOI] [PubMed] [Google Scholar]
  5. Daniel R. M., Finney J. L., Réat V., Dunn R., Ferrand M., Smith J. C. Enzyme dynamics and activity: time-scale dependence of dynamical transitions in glutamate dehydrogenase solution. Biophys J. 1999 Oct;77(4):2184–2190. doi: 10.1016/S0006-3495(99)77058-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Doster W., Cusack S., Petry W. Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature. 1989 Feb 23;337(6209):754–756. doi: 10.1038/337754a0. [DOI] [PubMed] [Google Scholar]
  7. Fitter J., Lechner R. E., Dencher N. A. Picosecond molecular motions in bacteriorhodopsin from neutron scattering. Biophys J. 1997 Oct;73(4):2126–2137. doi: 10.1016/S0006-3495(97)78243-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fitter J. The temperature dependence of internal molecular motions in hydrated and dry alpha-amylase: the role of hydration water in the dynamical transition of proteins. Biophys J. 1999 Feb;76(2):1034–1042. doi: 10.1016/S0006-3495(99)77268-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frauenfelder H., Sligar S. G., Wolynes P. G. The energy landscapes and motions of proteins. Science. 1991 Dec 13;254(5038):1598–1603. doi: 10.1126/science.1749933. [DOI] [PubMed] [Google Scholar]
  10. Gershenson A., Schauerte J. A., Giver L., Arnold F. H. Tryptophan phosphorescence study of enzyme flexibility and unfolding in laboratory-evolved thermostable esterases. Biochemistry. 2000 Apr 25;39(16):4658–4665. doi: 10.1021/bi992473s. [DOI] [PubMed] [Google Scholar]
  11. Ma B., Tsai C. J., Nussinov R. A systematic study of the vibrational free energies of polypeptides in folded and random states. Biophys J. 2000 Nov;79(5):2739–2753. doi: 10.1016/S0006-3495(00)76513-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Tang K. E., Dill K. A. Native protein fluctuations: the conformational-motion temperature and the inverse correlation of protein flexibility with protein stability. J Biomol Struct Dyn. 1998 Oct;16(2):397–411. doi: 10.1080/07391102.1998.10508256. [DOI] [PubMed] [Google Scholar]
  13. Tilton R. F., Jr, Dewan J. C., Petsko G. A. Effects of temperature on protein structure and dynamics: X-ray crystallographic studies of the protein ribonuclease-A at nine different temperatures from 98 to 320 K. Biochemistry. 1992 Mar 10;31(9):2469–2481. doi: 10.1021/bi00124a006. [DOI] [PubMed] [Google Scholar]
  14. Tsai A. M., Neumann D. A., Bell L. N. Molecular dynamics of solid-state lysozyme as affected by glycerol and water: a neutron scattering study. Biophys J. 2000 Nov;79(5):2728–2732. doi: 10.1016/S0006-3495(00)76511-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wrba A., Schweiger A., Schultes V., Jaenicke R., Závodszky P. Extremely thermostable D-glyceraldehyde-3-phosphate dehydrogenase from the eubacterium Thermotoga maritima. Biochemistry. 1990 Aug 21;29(33):7584–7592. doi: 10.1021/bi00485a007. [DOI] [PubMed] [Google Scholar]
  16. Zaccai G. How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science. 2000 Jun 2;288(5471):1604–1607. doi: 10.1126/science.288.5471.1604. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES