Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Oct;81(4):2357–2369. doi: 10.1016/S0006-3495(01)75882-1

Spin and fluorescent probing of the binding interface between tissue factor and factor VIIa at multiple sites.

R Owenius 1, M Osterlund 1, M Svensson 1, M Lindgren 1, E Persson 1, P O Freskgård 1, U Carlsson 1
PMCID: PMC1301706  PMID: 11566805

Abstract

The specific complex between the extracellular part of tissue factor (sTF) and factor VIIa (FVIIa) was chosen as a model for studies of the binding interface between two interacting proteins. Six surface-exposed positions in sTF, residues known to contribute to the sTF-FVIIa interaction, were selected for cysteine mutation and site-directed labeling with spin and fluorescent probes. The binding interface was characterized by spectral data from electron paramagnetic resonance (EPR) and steady-state and time-domain fluorescence spectroscopy. The labels reported on compact local environments at positions 158 and 207 in the interface region between sTF and the gamma-carboxyglutamic acid (Gla) domain of FVIIa, and at positions 22 and 140 in the interface region between sTF and the first epidermal growth factor-like (EGF1) domain of FVIIa. The tightness of the local interactions in these parts of the interface is similar to that seen in the interior of globular proteins. This was further emphasized by the reduced local polarity detected by the fluorescent label upon FVIIa binding, especially in the sTF-Gla region. There were indications of structural rigidity also at positions 45 and 94 in the interface region between sTF and the protease domain (PD) of FVIIa, despite the perturbed cofactor function of these sTF variants. The results of the present study indicate that the multi-probing approach enables comparison of the tightness and characteristics of interaction along the binding interface of a protein complex. This approach also increases the probability of acquiring reliable structural data that are descriptive of the wild-type proteins.

Full Text

The Full Text of this article is available as a PDF (171.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banner D. W., D'Arcy A., Chène C., Winkler F. K., Guha A., Konigsberg W. H., Nemerson Y., Kirchhofer D. The crystal structure of the complex of blood coagulation factor VIIa with soluble tissue factor. Nature. 1996 Mar 7;380(6569):41–46. doi: 10.1038/380041a0. [DOI] [PubMed] [Google Scholar]
  2. Carlsson U., Jonsson B. H. Folding of beta-sheet proteins. Curr Opin Struct Biol. 1995 Aug;5(4):482–487. doi: 10.1016/0959-440x(95)80032-8. [DOI] [PubMed] [Google Scholar]
  3. Freskgård P. O., Olsen O. H., Persson E. Structural changes in factor VIIa induced by Ca2+ and tissue factor studied using circular dichroism spectroscopy. Protein Sci. 1996 Aug;5(8):1531–1540. doi: 10.1002/pro.5560050809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gibbs C. S., McCurdy S. N., Leung L. L., Paborsky L. R. Identification of the factor VIIa binding site on tissue factor by homologous loop swap and alanine scanning mutagenesis. Biochemistry. 1994 Nov 29;33(47):14003–14010. doi: 10.1021/bi00251a007. [DOI] [PubMed] [Google Scholar]
  5. Hammarström P., Owenius R., Mårtensson L. G., Carlsson U., Lindgren M. High-resolution probing of local conformational changes in proteins by the use of multiple labeling: unfolding and self-assembly of human carbonic anhydrase II monitored by spin, fluorescent, and chemical reactivity probes. Biophys J. 2001 Jun;80(6):2867–2885. doi: 10.1016/S0006-3495(01)76253-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hammarström P., Persson M., Freskgârd P. O., Mârtensson L. G., Andersson D., Jonsson B. H., Carlsson U. Structural mapping of an aggregation nucleation site in a molten globule intermediate. J Biol Chem. 1999 Nov 12;274(46):32897–32903. doi: 10.1074/jbc.274.46.32897. [DOI] [PubMed] [Google Scholar]
  7. Hammarström P., Persson M., Owenius R., Lindgren M., Carlsson U. Protein substrate binding induces conformational changes in the chaperonin GroEL. A suggested mechanism for unfoldase activity. J Biol Chem. 2000 Jul 28;275(30):22832–22838. doi: 10.1074/jbc.M000649200. [DOI] [PubMed] [Google Scholar]
  8. Harlos K., Martin D. M., O'Brien D. P., Jones E. Y., Stuart D. I., Polikarpov I., Miller A., Tuddenham E. G., Boys C. W. Crystal structure of the extracellular region of human tissue factor. Nature. 1994 Aug 25;370(6491):662–666. doi: 10.1038/370662a0. [DOI] [PubMed] [Google Scholar]
  9. Hubbell W. L., Cafiso D. S., Altenbach C. Identifying conformational changes with site-directed spin labeling. Nat Struct Biol. 2000 Sep;7(9):735–739. doi: 10.1038/78956. [DOI] [PubMed] [Google Scholar]
  10. Hubbell W. L., Gross A., Langen R., Lietzow M. A. Recent advances in site-directed spin labeling of proteins. Curr Opin Struct Biol. 1998 Oct;8(5):649–656. doi: 10.1016/s0959-440x(98)80158-9. [DOI] [PubMed] [Google Scholar]
  11. Hubbell W. L., Mchaourab H. S., Altenbach C., Lietzow M. A. Watching proteins move using site-directed spin labeling. Structure. 1996 Jul 15;4(7):779–783. doi: 10.1016/s0969-2126(96)00085-8. [DOI] [PubMed] [Google Scholar]
  12. Kelley R. F., Costas K. E., O'Connell M. P., Lazarus R. A. Analysis of the factor VIIa binding site on human tissue factor: effects of tissue factor mutations on the kinetics and thermodynamics of binding. Biochemistry. 1995 Aug 22;34(33):10383–10392. doi: 10.1021/bi00033a009. [DOI] [PubMed] [Google Scholar]
  13. Keyes R. S., Bobst A. M. Detection of internal and overall dynamics of a two-atom-tethered spin-labeled DNA. Biochemistry. 1995 Jul 18;34(28):9265–9276. doi: 10.1021/bi00028a040. [DOI] [PubMed] [Google Scholar]
  14. Langen R., Oh K. J., Cascio D., Hubbell W. L. Crystal structures of spin labeled T4 lysozyme mutants: implications for the interpretation of EPR spectra in terms of structure. Biochemistry. 2000 Jul 25;39(29):8396–8405. doi: 10.1021/bi000604f. [DOI] [PubMed] [Google Scholar]
  15. Lo Conte L., Chothia C., Janin J. The atomic structure of protein-protein recognition sites. J Mol Biol. 1999 Feb 5;285(5):2177–2198. doi: 10.1006/jmbi.1998.2439. [DOI] [PubMed] [Google Scholar]
  16. Mchaourab H. S., Lietzow M. A., Hideg K., Hubbell W. L. Motion of spin-labeled side chains in T4 lysozyme. Correlation with protein structure and dynamics. Biochemistry. 1996 Jun 18;35(24):7692–7704. doi: 10.1021/bi960482k. [DOI] [PubMed] [Google Scholar]
  17. Muller Y. A., Ultsch M. H., Kelley R. F., de Vos A. M. Structure of the extracellular domain of human tissue factor: location of the factor VIIa binding site. Biochemistry. 1994 Sep 13;33(36):10864–10870. doi: 10.1021/bi00202a003. [DOI] [PubMed] [Google Scholar]
  18. Muller Y. A., Ultsch M. H., de Vos A. M. The crystal structure of the extracellular domain of human tissue factor refined to 1.7 A resolution. J Mol Biol. 1996 Feb 16;256(1):144–159. doi: 10.1006/jmbi.1996.0073. [DOI] [PubMed] [Google Scholar]
  19. Osterlund M., Owenius R., Persson E., Lindgren M., Carlsson U., Freskgård P. O., Svensson M. Spectroscopic probing of the influence of calcium and the gla domain on the interaction between the first EGF domain in factor VIIa and tissue factor. Eur J Biochem. 2000 Oct;267(20):6204–6211. doi: 10.1046/j.1432-1327.2000.01693.x. [DOI] [PubMed] [Google Scholar]
  20. Owenius R., Osterlund M., Lindgren M., Svensson M., Olsen O. H., Persson E., Freskgård P. O., Carlsson U. Properties of spin and fluorescent labels at a receptor-ligand interface. Biophys J. 1999 Oct;77(4):2237–2250. doi: 10.1016/S0006-3495(99)77064-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Persson E., Olsen O. H., Ostergaard A., Nielsen L. S. Ca2+ binding to the first epidermal growth factor-like domain of factor VIIa increases amidolytic activity and tissue factor affinity. J Biol Chem. 1997 Aug 8;272(32):19919–19924. doi: 10.1074/jbc.272.32.19919. [DOI] [PubMed] [Google Scholar]
  22. Persson M., Hammarström P., Lindgren M., Jonsson B. H., Svensson M., Carlsson U. EPR mapping of interactions between spin-labeled variants of human carbonic anhydrase II and GroEL: evidence for increased flexibility of the hydrophobic core by the interaction. Biochemistry. 1999 Jan 5;38(1):432–441. doi: 10.1021/bi981442e. [DOI] [PubMed] [Google Scholar]
  23. Ruf W., Kelly C. R., Schullek J. R., Martin D. M., Polikarpov I., Boys C. W., Tuddenham E. G., Edgington T. S. Energetic contributions and topographical organization of ligand binding residues of tissue factor. Biochemistry. 1995 May 16;34(19):6310–6315. doi: 10.1021/bi00019a008. [DOI] [PubMed] [Google Scholar]
  24. Ruf W., Schullek J. R., Stone M. J., Edgington T. S. Mutational mapping of functional residues in tissue factor: identification of factor VII recognition determinants in both structural modules of the predicted cytokine receptor homology domain. Biochemistry. 1994 Feb 15;33(6):1565–1572. doi: 10.1021/bi00172a037. [DOI] [PubMed] [Google Scholar]
  25. Schullek J. R., Ruf W., Edgington T. S. Key ligand interface residues in tissue factor contribute independently to factor VIIa binding. J Biol Chem. 1994 Jul 29;269(30):19399–19403. [PubMed] [Google Scholar]
  26. Svensson M., Jonasson P., Freskgård P. O., Jonsson B. H., Lindgren M., Mårtensson L. G., Gentile M., Borén K., Carlsson U. Mapping the folding intermediate of human carbonic anhydrase II. Probing substructure by chemical reactivity and spin and fluorescence labeling of engineered cysteine residues. Biochemistry. 1995 Jul 11;34(27):8606–8620. doi: 10.1021/bi00027a010. [DOI] [PubMed] [Google Scholar]
  27. Thim L., Bjoern S., Christensen M., Nicolaisen E. M., Lund-Hansen T., Pedersen A. H., Hedner U. Amino acid sequence and posttranslational modifications of human factor VIIa from plasma and transfected baby hamster kidney cells. Biochemistry. 1988 Oct 4;27(20):7785–7793. doi: 10.1021/bi00420a030. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES