Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Oct;81(4):2389–2394. doi: 10.1016/S0006-3495(01)75885-7

Bilayer reconstitution of voltage-dependent ion channels using a microfabricated silicon chip.

R Pantoja 1, D Sigg 1, R Blunck 1, F Bezanilla 1, J R Heath 1
PMCID: PMC1301709  PMID: 11566808

Abstract

Painted bilayers containing reconstituted ion channels serve as a well defined model system for electrophysiological investigations of channel structure and function. Horizontally oriented bilayers with easy solution access to both sides were obtained by painting a phospholipid:decane mixture across a cylindrical pore etched into a 200-microm thick silicon wafer. Silanization of the SiO(2) layer produced a hydrophobic surface that promoted the adhesion of the lipid mixture. Standard lithographic techniques and anisotropic deep-reactive ion etching were used to create pores with diameters from 50 to 200 microm. The cylindrical structure of the pore in the partition and the surface treatment resulted in stable bilayers. These were used to reconstitute Maxi K channels in the 100- and 200-microm diameter pores. The electrophysiological characteristics of bilayers suspended in microchips were comparable with that of other bilayer preparations. The horizontal orientation and good voltage clamping properties make the microchip bilayer method an excellent system to study the electrical properties of reconstituted membrane proteins simultaneously with optical probes.

Full Text

The Full Text of this article is available as a PDF (116.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelman J. P., Shen K. Z., Kavanaugh M. P., Warren R. A., Wu Y. N., Lagrutta A., Bond C. T., North R. A. Calcium-activated potassium channels expressed from cloned complementary DNAs. Neuron. 1992 Aug;9(2):209–216. doi: 10.1016/0896-6273(92)90160-f. [DOI] [PubMed] [Google Scholar]
  2. Brian A. A., McConnell H. M. Allogeneic stimulation of cytotoxic T cells by supported planar membranes. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6159–6163. doi: 10.1073/pnas.81.19.6159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Díaz L., Meera P., Amigo J., Stefani E., Alvarez O., Toro L., Latorre R. Role of the S4 segment in a voltage-dependent calcium-sensitive potassium (hSlo) channel. J Biol Chem. 1998 Dec 4;273(49):32430–32436. doi: 10.1074/jbc.273.49.32430. [DOI] [PubMed] [Google Scholar]
  4. Groves J. T., Ulman N., Boxer S. G. Micropatterning fluid lipid bilayers on solid supports. Science. 1997 Jan 31;275(5300):651–653. doi: 10.1126/science.275.5300.651. [DOI] [PubMed] [Google Scholar]
  5. Harms G. S., Sonnleitner M., Schütz G. J., Gruber H. J., Schmidt T. Single-molecule anisotropy imaging. Biophys J. 1999 Nov;77(5):2864–2870. doi: 10.1016/S0006-3495(99)77118-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jaklevic J. M., Garner H. R., Miller G. A. Instrumentation for the genome project. Annu Rev Biomed Eng. 1999;1:649–678. doi: 10.1146/annurev.bioeng.1.1.649. [DOI] [PubMed] [Google Scholar]
  7. Kalb E., Frey S., Tamm L. K. Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers. Biochim Biophys Acta. 1992 Jan 31;1103(2):307–316. doi: 10.1016/0005-2736(92)90101-q. [DOI] [PubMed] [Google Scholar]
  8. Labarca P., Latorre R. Insertion of ion channels into planar lipid bilayers by vesicle fusion. Methods Enzymol. 1992;207:447–463. doi: 10.1016/0076-6879(92)07032-j. [DOI] [PubMed] [Google Scholar]
  9. Pérez G., Lagrutta A., Adelman J. P., Toro L. Reconstitution of expressed KCa channels from Xenopus oocytes to lipid bilayers. Biophys J. 1994 Apr;66(4):1022–1027. doi: 10.1016/S0006-3495(94)80883-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sackmann E. Supported membranes: scientific and practical applications. Science. 1996 Jan 5;271(5245):43–48. doi: 10.1126/science.271.5245.43. [DOI] [PubMed] [Google Scholar]
  11. Salafsky J., Groves J. T., Boxer S. G. Architecture and function of membrane proteins in planar supported bilayers: a study with photosynthetic reaction centers. Biochemistry. 1996 Nov 26;35(47):14773–14781. doi: 10.1021/bi961432i. [DOI] [PubMed] [Google Scholar]
  12. Schmidt C, Mayer M, Vogel H. A Chip-Based Biosensor for the Functional Analysis of Single Ion Channels We thank E. Ermanntraut, L. Giovangrandi, T. Wohland, A. Brecht, M. Köhler, C. Bieri, D. Stamou, and R. Hovius for advice. This work was supported by the Swiss National Science Foundation (Priority Program for Biotechnology) and by an interdepartmental grant of the Swiss Federal Institute of Technology Lausanne (EPFL, Project Microtechnique 96). Angew Chem Int Ed Engl. 2000 Sep 1;39(17):3137–3140. doi: 10.1002/1521-3773(20000901)39:17<3137::aid-anie3137>3.0.co;2-d. [DOI] [PubMed] [Google Scholar]
  13. Tatulian S. A., Jones L. R., Reddy L. G., Stokes D. L., Tamm L. K. Secondary structure and orientation of phospholamban reconstituted in supported bilayers from polarized attenuated total reflection FTIR spectroscopy. Biochemistry. 1995 Apr 4;34(13):4448–4456. doi: 10.1021/bi00013a038. [DOI] [PubMed] [Google Scholar]
  14. Tseng-Crank J., Foster C. D., Krause J. D., Mertz R., Godinot N., DiChiara T. J., Reinhart P. H. Cloning, expression, and distribution of functionally distinct Ca(2+)-activated K+ channel isoforms from human brain. Neuron. 1994 Dec;13(6):1315–1330. doi: 10.1016/0896-6273(94)90418-9. [DOI] [PubMed] [Google Scholar]
  15. Voldman J., Gray M. L., Schmidt M. A. Microfabrication in biology and medicine. Annu Rev Biomed Eng. 1999;1:401–425. doi: 10.1146/annurev.bioeng.1.1.401. [DOI] [PubMed] [Google Scholar]
  16. Wagner M. L., Tamm L. K. Tethered polymer-supported planar lipid bilayers for reconstitution of integral membrane proteins: silane-polyethyleneglycol-lipid as a cushion and covalent linker. Biophys J. 2000 Sep;79(3):1400–1414. doi: 10.1016/S0006-3495(00)76392-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wonderlin W. F., Finkel A., French R. J. Optimizing planar lipid bilayer single-channel recordings for high resolution with rapid voltage steps. Biophys J. 1990 Aug;58(2):289–297. doi: 10.1016/S0006-3495(90)82376-6. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES