Abstract
Among the multiple effects involved in chromatin condensation and decondensation processes, interactions between nucleosome core particles are suspected to play a crucial role. We analyze them in the absence of linker DNA and added proteins, after the self-assembly of isolated nucleosome core particles under controlled ionic conditions. We describe an original lamellar mesophase forming tubules on the mesoscopic scale. High resolution imaging of cryosections of vitrified samples reveals how nucleosome core particles stack on top of one another into columns which themselves align to form bilayers that repel one another through a solvent layer. We deduce from this structural organization how the particles interact through attractive interactions between top and bottom faces and lateral polar interactions that originate in the heterogeneous charge distribution at the surface of the particle. These interactions, at work under conditions comparable with those found in the living cell, should be of importance in the mechanisms governing chromatin compaction in vivo.
Full Text
The Full Text of this article is available as a PDF (978.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Clark D. J., Kimura T. Electrostatic mechanism of chromatin folding. J Mol Biol. 1990 Feb 20;211(4):883–896. doi: 10.1016/0022-2836(90)90081-V. [DOI] [PubMed] [Google Scholar]
- Cui Y., Bustamante C. Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):127–132. doi: 10.1073/pnas.97.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cyrklaff M., Adrian M., Dubochet J. Evaporation during preparation of unsupported thin vitrified aqueous layers for cryo-electron microscopy. J Electron Microsc Tech. 1990 Dec;16(4):351–355. doi: 10.1002/jemt.1060160407. [DOI] [PubMed] [Google Scholar]
- Dubochet J., Adrian M., Chang J. J., Homo J. C., Lepault J., McDowall A. W., Schultz P. Cryo-electron microscopy of vitrified specimens. Q Rev Biophys. 1988 May;21(2):129–228. doi: 10.1017/s0033583500004297. [DOI] [PubMed] [Google Scholar]
- Finch J. T., Brown R. S., Richmond T., Rushton B., Lutter L. C., Klug A. X-ray diffraction study of a new crystal form of the nucleosome core showing higher resolution. J Mol Biol. 1981 Feb 5;145(4):757–769. doi: 10.1016/0022-2836(81)90313-2. [DOI] [PubMed] [Google Scholar]
- Finch J. T., Klug A. X-ray and electron microscope analyses of crystals of nucleosome cores. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 1):1–9. doi: 10.1101/sqb.1978.042.01.003. [DOI] [PubMed] [Google Scholar]
- Fletcher T. M., Hansen J. C. The nucleosomal array: structure/function relationships. Crit Rev Eukaryot Gene Expr. 1996;6(2-3):149–188. doi: 10.1615/critreveukargeneexpr.v6.i2-3.40. [DOI] [PubMed] [Google Scholar]
- Garcia-Ramirez M., Rocchini C., Ausio J. Modulation of chromatin folding by histone acetylation. J Biol Chem. 1995 Jul 28;270(30):17923–17928. doi: 10.1074/jbc.270.30.17923. [DOI] [PubMed] [Google Scholar]
- Grau L. P., Azorín F., Subirana J. A. Aggregation of mono- and dinucleosomes into chromatin-like fibers. Chromosoma. 1982;87(4):437–445. doi: 10.1007/BF00327184. [DOI] [PubMed] [Google Scholar]
- Gusse M., Chevaillier P. Etude ultrastructurale et chimique de la chromatine au cours de la spermiogenèse de la roussette Scyliorhinus caniculus (L.). Cytobiologie. 1978 Apr;16(3):421–443. [PubMed] [Google Scholar]
- Harp J. M., Hanson B. L., Timm D. E., Bunick G. J. Asymmetries in the nucleosome core particle at 2.5 A resolution. Acta Crystallogr D Biol Crystallogr. 2000 Dec;56(Pt 12):1513–1534. doi: 10.1107/s0907444900011847. [DOI] [PubMed] [Google Scholar]
- Leforestier A., Fudaley S., Livolant F. Spermidine-induced aggregation of nucleosome core particles: evidence for multiple liquid crystalline phases. J Mol Biol. 1999 Jul 9;290(2):481–494. doi: 10.1006/jmbi.1999.2895. [DOI] [PubMed] [Google Scholar]
- Leforestier A., Livolant F. Liquid crystalline ordering of nucleosome core particles under macromolecular crowding conditions: evidence for a discotic columnar hexagonal phase. Biophys J. 1997 Oct;73(4):1771–1776. doi: 10.1016/S0006-3495(97)78207-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Livolant F., Leforestier A. Chiral discotic columnar germs of nucleosome core particles. Biophys J. 2000 May;78(5):2716–2729. doi: 10.1016/S0006-3495(00)76816-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luger K., Mäder A. W., Richmond R. K., Sargent D. F., Richmond T. J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997 Sep 18;389(6648):251–260. doi: 10.1038/38444. [DOI] [PubMed] [Google Scholar]
- Manning G. S. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev Biophys. 1978 May;11(2):179–246. doi: 10.1017/s0033583500002031. [DOI] [PubMed] [Google Scholar]
- McDowall A. W., Smith J. M., Dubochet J. Cryo-electron microscopy of vitrified chromosomes in situ. EMBO J. 1986 Jun;5(6):1395–1402. doi: 10.1002/j.1460-2075.1986.tb04373.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore S. C., Ausió J. Major role of the histones H3-H4 in the folding of the chromatin fiber. Biochem Biophys Res Commun. 1997 Jan 3;230(1):136–139. doi: 10.1006/bbrc.1996.5903. [DOI] [PubMed] [Google Scholar]
- Orphanides G., Reinberg D. RNA polymerase II elongation through chromatin. Nature. 2000 Sep 28;407(6803):471–475. doi: 10.1038/35035000. [DOI] [PubMed] [Google Scholar]
- Sperling R., Wachtel E. J. The histones. Adv Protein Chem. 1981;34:1–60. doi: 10.1016/s0065-3233(08)60517-3. [DOI] [PubMed] [Google Scholar]
- Strahl B. D., Allis C. D. The language of covalent histone modifications. Nature. 2000 Jan 6;403(6765):41–45. doi: 10.1038/47412. [DOI] [PubMed] [Google Scholar]
- Struck M. M., Klug A., Richmond T. J. Comparison of X-ray structures of the nucleosome core particle in two different hydration states. J Mol Biol. 1992 Mar 5;224(1):253–264. doi: 10.1016/0022-2836(92)90588-b. [DOI] [PubMed] [Google Scholar]
- Tatchell K., Van Holde K. E. Compact oligomers and nucleosome phasing. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3583–3587. doi: 10.1073/pnas.75.8.3583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tse C., Hansen J. C. Hybrid trypsinized nucleosomal arrays: identification of multiple functional roles of the H2A/H2B and H3/H4 N-termini in chromatin fiber compaction. Biochemistry. 1997 Sep 23;36(38):11381–11388. doi: 10.1021/bi970801n. [DOI] [PubMed] [Google Scholar]
- Widom J. Physicochemical studies of the folding of the 100 A nucleosome filament into the 300 A filament. Cation dependence. J Mol Biol. 1986 Aug 5;190(3):411–424. doi: 10.1016/0022-2836(86)90012-4. [DOI] [PubMed] [Google Scholar]
- Widom J. Structure, dynamics, and function of chromatin in vitro. Annu Rev Biophys Biomol Struct. 1998;27:285–327. doi: 10.1146/annurev.biophys.27.1.285. [DOI] [PubMed] [Google Scholar]
- Wolffe A. P., Hayes J. J. Chromatin disruption and modification. Nucleic Acids Res. 1999 Feb 1;27(3):711–720. doi: 10.1093/nar/27.3.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yao J., Lowary P. T., Widom J. Linker DNA bending induced by the core histones of chromatin. Biochemistry. 1991 Aug 27;30(34):8408–8414. doi: 10.1021/bi00098a019. [DOI] [PubMed] [Google Scholar]
- van Holde K., Zlatanova J. What determines the folding of the chromatin fiber? Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10548–10555. doi: 10.1073/pnas.93.20.10548. [DOI] [PMC free article] [PubMed] [Google Scholar]