Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Nov;81(5):2507–2516. doi: 10.1016/S0006-3495(01)75896-1

Understanding beta-hairpin formation by molecular dynamics simulations of unfolding.

J Lee 1, S Shin 1
PMCID: PMC1301720  PMID: 11606266

Abstract

We have studied the mechanism of formation of a 16-residue beta-hairpin from the protein GB1 using molecular dynamics simulations in an aqueous environment. The analysis of unfolding trajectories at high temperatures suggests a refolding pathway consisting of several transient intermediates. The changes in the interaction energies of residues are related with the structural changes during the unfolding of the hairpin. The electrostatic energies of the residues in the turn region are found to be responsible for the transition between the folded state and the hydrophobic core state. The van der Waals interaction energies of the residues in the hydrophobic core reflect the behavior of the radius of gyration of the core region. We have examined the opposing influences of the protein-protein (PP) energy, which favors the native state, and the protein-solvent (PS) energy, which favors unfolding, in the formation of the beta-hairpin structure. It is found that the behavior of the electrostatic components of PP and PS energies reflects the structural changes associated with the loss of backbone hydrogen bonding. Relative changes in the PP and PS van der Waals interactions are related with the disruption of the hydrophobic core of a protein. The results of the simulations support the hydrophobic collapse mechanism of beta-hairpin folding.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anfinsen C. B. Principles that govern the folding of protein chains. Science. 1973 Jul 20;181(4096):223–230. doi: 10.1126/science.181.4096.223. [DOI] [PubMed] [Google Scholar]
  2. Blanco F. J., Rivas G., Serrano L. A short linear peptide that folds into a native stable beta-hairpin in aqueous solution. Nat Struct Biol. 1994 Sep;1(9):584–590. doi: 10.1038/nsb0994-584. [DOI] [PubMed] [Google Scholar]
  3. Blanco F. J., Serrano L. Folding of protein G B1 domain studied by the conformational characterization of fragments comprising its secondary structure elements. Eur J Biochem. 1995 Jun 1;230(2):634–649. doi: 10.1111/j.1432-1033.1995.tb20605.x. [DOI] [PubMed] [Google Scholar]
  4. Blanco F., Ramírez-Alvarado M., Serrano L. Formation and stability of beta-hairpin structures in polypeptides. Curr Opin Struct Biol. 1998 Feb;8(1):107–111. doi: 10.1016/s0959-440x(98)80017-1. [DOI] [PubMed] [Google Scholar]
  5. Boczko E. M., Brooks C. L., 3rd First-principles calculation of the folding free energy of a three-helix bundle protein. Science. 1995 Jul 21;269(5222):393–396. doi: 10.1126/science.7618103. [DOI] [PubMed] [Google Scholar]
  6. Bonvin A. M., van Gunsteren W. F. beta-hairpin stability and folding: molecular dynamics studies of the first beta-hairpin of tendamistat. J Mol Biol. 2000 Feb 11;296(1):255–268. doi: 10.1006/jmbi.1999.3446. [DOI] [PubMed] [Google Scholar]
  7. Bryant Z., Pande V. S., Rokhsar D. S. Mechanical unfolding of a beta-hairpin using molecular dynamics. Biophys J. 2000 Feb;78(2):584–589. doi: 10.1016/S0006-3495(00)76618-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dill K. A. Polymer principles and protein folding. Protein Sci. 1999 Jun;8(6):1166–1180. doi: 10.1110/ps.8.6.1166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dinner A. R., Karplus M. Is protein unfolding the reverse of protein folding? A lattice simulation analysis. J Mol Biol. 1999 Sep 17;292(2):403–419. doi: 10.1006/jmbi.1999.3051. [DOI] [PubMed] [Google Scholar]
  10. Dinner A. R., Lazaridis T., Karplus M. Understanding beta-hairpin formation. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9068–9073. doi: 10.1073/pnas.96.16.9068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Duan Y., Kollman P. A. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science. 1998 Oct 23;282(5389):740–744. doi: 10.1126/science.282.5389.740. [DOI] [PubMed] [Google Scholar]
  12. Finkelstein A. V. Can protein unfolding simulate protein folding? Protein Eng. 1997 Aug;10(8):843–845. doi: 10.1093/protein/10.8.843. [DOI] [PubMed] [Google Scholar]
  13. Karplus M., Sali A. Theoretical studies of protein folding and unfolding. Curr Opin Struct Biol. 1995 Feb;5(1):58–73. doi: 10.1016/0959-440x(95)80010-x. [DOI] [PubMed] [Google Scholar]
  14. Klimov D. K., Thirumalai D. Mechanisms and kinetics of beta-hairpin formation. Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2544–2549. doi: 10.1073/pnas.97.6.2544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lazaridis T., Karplus M. "New view" of protein folding reconciled with the old through multiple unfolding simulations. Science. 1997 Dec 12;278(5345):1928–1931. doi: 10.1126/science.278.5345.1928. [DOI] [PubMed] [Google Scholar]
  16. Lee J., Lee K., Shin S. Theoretical studies of the response of a protein structure to cavity-creating mutations. Biophys J. 2000 Apr;78(4):1665–1671. doi: 10.1016/S0006-3495(00)76718-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ma B., Nussinov R. Molecular dynamics simulations of a beta-hairpin fragment of protein G: balance between side-chain and backbone forces. J Mol Biol. 2000 Mar 3;296(4):1091–1104. doi: 10.1006/jmbi.2000.3518. [DOI] [PubMed] [Google Scholar]
  18. Muñoz V., Henry E. R., Hofrichter J., Eaton W. A. A statistical mechanical model for beta-hairpin kinetics. Proc Natl Acad Sci U S A. 1998 May 26;95(11):5872–5879. doi: 10.1073/pnas.95.11.5872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Muñoz V., Serrano L. Helix design, prediction and stability. Curr Opin Biotechnol. 1995 Aug;6(4):382–386. doi: 10.1016/0958-1669(95)80066-2. [DOI] [PubMed] [Google Scholar]
  20. Muñoz V., Thompson P. A., Hofrichter J., Eaton W. A. Folding dynamics and mechanism of beta-hairpin formation. Nature. 1997 Nov 13;390(6656):196–199. doi: 10.1038/36626. [DOI] [PubMed] [Google Scholar]
  21. Onuchic J. N., Luthey-Schulten Z., Wolynes P. G. Theory of protein folding: the energy landscape perspective. Annu Rev Phys Chem. 1997;48:545–600. doi: 10.1146/annurev.physchem.48.1.545. [DOI] [PubMed] [Google Scholar]
  22. Pande V. S., Rokhsar D. S. Molecular dynamics simulations of unfolding and refolding of a beta-hairpin fragment of protein G. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9062–9067. doi: 10.1073/pnas.96.16.9062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Prévost M., Ortmans I. Refolding simulations of an isolated fragment of barnase into a native-like beta hairpin: evidence for compactness and hydrogen bonding as concurrent stabilizing factors. Proteins. 1997 Oct;29(2):212–227. doi: 10.1002/(sici)1097-0134(199710)29:2<212::aid-prot9>3.0.co;2-e. [DOI] [PubMed] [Google Scholar]
  24. Roccatano D., Amadei A., Di Nola A., Berendsen H. J. A molecular dynamics study of the 41-56 beta-hairpin from B1 domain of protein G. Protein Sci. 1999 Oct;8(10):2130–2143. doi: 10.1110/ps.8.10.2130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Shakhnovich E. I. Theoretical studies of protein-folding thermodynamics and kinetics. Curr Opin Struct Biol. 1997 Feb;7(1):29–40. doi: 10.1016/s0959-440x(97)80005-x. [DOI] [PubMed] [Google Scholar]
  26. Thompson P. A., Eaton W. A., Hofrichter J. Laser temperature jump study of the helix<==>coil kinetics of an alanine peptide interpreted with a 'kinetic zipper' model. Biochemistry. 1997 Jul 29;36(30):9200–9210. doi: 10.1021/bi9704764. [DOI] [PubMed] [Google Scholar]
  27. Wang L., Duan Y., Shortle R., Imperiali B., Kollman P. A. Study of the stability and unfolding mechanism of BBA1 by molecular dynamics simulations at different temperatures. Protein Sci. 1999 Jun;8(6):1292–1304. doi: 10.1110/ps.8.6.1292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Williams S., Causgrove T. P., Gilmanshin R., Fang K. S., Callender R. H., Woodruff W. H., Dyer R. B. Fast events in protein folding: helix melting and formation in a small peptide. Biochemistry. 1996 Jan 23;35(3):691–697. doi: 10.1021/bi952217p. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES