Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Nov;81(5):2530–2546. doi: 10.1016/S0006-3495(01)75898-5

Calculation of rigid-body conformational changes using restraint-driven Cartesian transformations.

P Sompornpisut 1, Y S Liu 1, E Perozo 1
PMCID: PMC1301722  PMID: 11606268

Abstract

We present an approach for calculating conformational changes in membrane proteins using limited distance information. The method, named restraint-driven Cartesian transformations, involves 1) the use of relative distance changes; 2) the systematic sampling of rigid body movements in Cartesian space; 3) a penalty evaluation; and 4) model refinement using energy minimization. As a test case, we have analyzed the structural basis of activation gating in the Streptomyces lividans potassium channel (KcsA). A total of 10 pairs of distance restraints derived from site-directed spin labeling and electron paramagnetic resonance (SDSL-EPR) spectra were used to calculate the open conformation of the second transmembrane domains of KcsA (TM2). The SDSL-EPR based structure reveals a gating mechanism consistent with a scissoring-type motion of the TM2 segments that includes a pivot point near middle of the helix. The present approach considerably reduces the amount of time and effort required to establish the overall nature of conformational changes in membrane proteins. It is expected that this approach can be implemented into restrained molecular dynamics protocol to calculate the structure and conformational changes in a variety of membrane protein systems.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aqvist J., Luzhkov V. Ion permeation mechanism of the potassium channel. Nature. 2000 Apr 20;404(6780):881–884. doi: 10.1038/35009114. [DOI] [PubMed] [Google Scholar]
  2. Aszódi A., Gradwell M. J., Taylor W. R. Global fold determination from a small number of distance restraints. J Mol Biol. 1995 Aug 11;251(2):308–326. doi: 10.1006/jmbi.1995.0436. [DOI] [PubMed] [Google Scholar]
  3. Bernèche S., Roux B. Molecular dynamics of the KcsA K(+) channel in a bilayer membrane. Biophys J. 2000 Jun;78(6):2900–2917. doi: 10.1016/S0006-3495(00)76831-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Booth P. J., Curran A. R. Membrane protein folding. Curr Opin Struct Biol. 1999 Feb;9(1):115–121. doi: 10.1016/s0959-440x(99)80015-3. [DOI] [PubMed] [Google Scholar]
  5. Bowie J. U. Helix packing angle preferences. Nat Struct Biol. 1997 Nov;4(11):915–917. doi: 10.1038/nsb1197-915. [DOI] [PubMed] [Google Scholar]
  6. Bowie J. U. Helix packing in membrane proteins. J Mol Biol. 1997 Oct 10;272(5):780–789. doi: 10.1006/jmbi.1997.1279. [DOI] [PubMed] [Google Scholar]
  7. Capener C. E., Shrivastava I. H., Ranatunga K. M., Forrest L. R., Smith G. R., Sansom M. S. Homology modeling and molecular dynamics simulation studies of an inward rectifier potassium channel. Biophys J. 2000 Jun;78(6):2929–2942. doi: 10.1016/S0006-3495(00)76833-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Columbus L., Kálai T., Jekö J., Hideg K., Hubbell W. L. Molecular motion of spin labeled side chains in alpha-helices: analysis by variation of side chain structure. Biochemistry. 2001 Apr 3;40(13):3828–3846. doi: 10.1021/bi002645h. [DOI] [PubMed] [Google Scholar]
  9. Cortes D. M., Cuello L. G., Perozo E. Molecular architecture of full-length KcsA: role of cytoplasmic domains in ion permeation and activation gating. J Gen Physiol. 2001 Feb;117(2):165–180. doi: 10.1085/jgp.117.2.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cortes D. M., Perozo E. Structural dynamics of the Streptomyces lividans K+ channel (SKC1): oligomeric stoichiometry and stability. Biochemistry. 1997 Aug 19;36(33):10343–10352. doi: 10.1021/bi971018y. [DOI] [PubMed] [Google Scholar]
  11. Cuello L. G., Romero J. G., Cortes D. M., Perozo E. pH-dependent gating in the Streptomyces lividans K+ channel. Biochemistry. 1998 Mar 10;37(10):3229–3236. doi: 10.1021/bi972997x. [DOI] [PubMed] [Google Scholar]
  12. Donnelly D., Overington J. P., Ruffle S. V., Nugent J. H., Blundell T. L. Modeling alpha-helical transmembrane domains: the calculation and use of substitution tables for lipid-facing residues. Protein Sci. 1993 Jan;2(1):55–70. doi: 10.1002/pro.5560020106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
  14. Farrens D. L., Altenbach C., Yang K., Hubbell W. L., Khorana H. G. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science. 1996 Nov 1;274(5288):768–770. doi: 10.1126/science.274.5288.768. [DOI] [PubMed] [Google Scholar]
  15. Guidoni L., Torre V., Carloni P. Water and potassium dynamics inside the KcsA K(+) channel. FEBS Lett. 2000 Jul 14;477(1-2):37–42. doi: 10.1016/s0014-5793(00)01712-9. [DOI] [PubMed] [Google Scholar]
  16. Herzyk P., Hubbard R. E. Automated method for modeling seven-helix transmembrane receptors from experimental data. Biophys J. 1995 Dec;69(6):2419–2442. doi: 10.1016/S0006-3495(95)80112-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Herzyk P., Hubbard R. E. Using experimental information to produce a model of the transmembrane domain of the ion channel phospholamban. Biophys J. 1998 Mar;74(3):1203–1214. doi: 10.1016/S0006-3495(98)77835-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hubbell W. L., Cafiso D. S., Altenbach C. Identifying conformational changes with site-directed spin labeling. Nat Struct Biol. 2000 Sep;7(9):735–739. doi: 10.1038/78956. [DOI] [PubMed] [Google Scholar]
  19. Hubbell W. L., Gross A., Langen R., Lietzow M. A. Recent advances in site-directed spin labeling of proteins. Curr Opin Struct Biol. 1998 Oct;8(5):649–656. doi: 10.1016/s0959-440x(98)80158-9. [DOI] [PubMed] [Google Scholar]
  20. Hustedt E. J., Smirnov A. I., Laub C. F., Cobb C. E., Beth A. H. Molecular distances from dipolar coupled spin-labels: the global analysis of multifrequency continuous wave electron paramagnetic resonance data. Biophys J. 1997 Apr;72(4):1861–1877. doi: 10.1016/S0006-3495(97)78832-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
  22. Koteiche H. A., Mchaourab H. S. Folding pattern of the alpha-crystallin domain in alphaA-crystallin determined by site-directed spin labeling. J Mol Biol. 1999 Nov 26;294(2):561–577. doi: 10.1006/jmbi.1999.3242. [DOI] [PubMed] [Google Scholar]
  23. Kukol A., Adams P. D., Rice L. M., Brunger A. T., Arkin T. I. Experimentally based orientational refinement of membrane protein models: A structure for the Influenza A M2 H+ channel. J Mol Biol. 1999 Feb 26;286(3):951–962. doi: 10.1006/jmbi.1998.2512. [DOI] [PubMed] [Google Scholar]
  24. Langen R., Oh K. J., Cascio D., Hubbell W. L. Crystal structures of spin labeled T4 lysozyme mutants: implications for the interpretation of EPR spectra in terms of structure. Biochemistry. 2000 Jul 25;39(29):8396–8405. doi: 10.1021/bi000604f. [DOI] [PubMed] [Google Scholar]
  25. Laskowski R. A., Rullmannn J. A., MacArthur M. W., Kaptein R., Thornton J. M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR. 1996 Dec;8(4):477–486. doi: 10.1007/BF00228148. [DOI] [PubMed] [Google Scholar]
  26. Liu Y. S., Sompornpisut P., Perozo E. Structure of the KcsA channel intracellular gate in the open state. Nat Struct Biol. 2001 Oct;8(10):883–887. doi: 10.1038/nsb1001-883. [DOI] [PubMed] [Google Scholar]
  27. Mchaourab H. S., Lietzow M. A., Hideg K., Hubbell W. L. Motion of spin-labeled side chains in T4 lysozyme. Correlation with protein structure and dynamics. Biochemistry. 1996 Jun 18;35(24):7692–7704. doi: 10.1021/bi960482k. [DOI] [PubMed] [Google Scholar]
  28. Pappu R. V., Marshall G. R., Ponder J. W. A potential smoothing algorithm accurately predicts transmembrane helix packing. Nat Struct Biol. 1999 Jan;6(1):50–55. doi: 10.1038/4922. [DOI] [PubMed] [Google Scholar]
  29. Perozo E., Cortes D. M., Cuello L. G. Structural rearrangements underlying K+-channel activation gating. Science. 1999 Jul 2;285(5424):73–78. doi: 10.1126/science.285.5424.73. [DOI] [PubMed] [Google Scholar]
  30. Perozo E., Cortes D. M., Cuello L. G. Three-dimensional architecture and gating mechanism of a K+ channel studied by EPR spectroscopy. Nat Struct Biol. 1998 Jun;5(6):459–469. doi: 10.1038/nsb0698-459. [DOI] [PubMed] [Google Scholar]
  31. Pogozheva I. D., Lomize A. L., Mosberg H. I. The transmembrane 7-alpha-bundle of rhodopsin: distance geometry calculations with hydrogen bonding constraints. Biophys J. 1997 May;72(5):1963–1985. doi: 10.1016/S0006-3495(97)78842-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Poirier M. A., Xiao W., Macosko J. C., Chan C., Shin Y. K., Bennett M. K. The synaptic SNARE complex is a parallel four-stranded helical bundle. Nat Struct Biol. 1998 Sep;5(9):765–769. doi: 10.1038/1799. [DOI] [PubMed] [Google Scholar]
  33. Rabenstein M. D., Shin Y. K. Determination of the distance between two spin labels attached to a macromolecule. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8239–8243. doi: 10.1073/pnas.92.18.8239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Roux B., MacKinnon R. The cavity and pore helices in the KcsA K+ channel: electrostatic stabilization of monovalent cations. Science. 1999 Jul 2;285(5424):100–102. doi: 10.1126/science.285.5424.100. [DOI] [PubMed] [Google Scholar]
  35. Sansom M. S., Kerr I. D. Influenza virus M2 protein: a molecular modelling study of the ion channel. Protein Eng. 1993 Jan;6(1):65–74. doi: 10.1093/protein/6.1.65. [DOI] [PubMed] [Google Scholar]
  36. Sansom M. S., Kerr I. D., Smith G. R., Son H. S. The influenza A virus M2 channel: a molecular modeling and simulation study. Virology. 1997 Jun 23;233(1):163–173. doi: 10.1006/viro.1997.8578. [DOI] [PubMed] [Google Scholar]
  37. Sansom M. S. Models and simulations of ion channels and related membrane proteins. Curr Opin Struct Biol. 1998 Apr;8(2):237–244. doi: 10.1016/s0959-440x(98)80045-6. [DOI] [PubMed] [Google Scholar]
  38. Sansom M. S., Sankararamakrishnan R., Kerr I. D. Modelling membrane proteins using structural restraints. Nat Struct Biol. 1995 Aug;2(8):624–631. doi: 10.1038/nsb0895-624. [DOI] [PubMed] [Google Scholar]
  39. Selvin P. R. The renaissance of fluorescence resonance energy transfer. Nat Struct Biol. 2000 Sep;7(9):730–734. doi: 10.1038/78948. [DOI] [PubMed] [Google Scholar]
  40. Shrivastava I. H., Sansom M. S. Simulations of ion permeation through a potassium channel: molecular dynamics of KcsA in a phospholipid bilayer. Biophys J. 2000 Feb;78(2):557–570. doi: 10.1016/S0006-3495(00)76616-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Skolnick J., Kolinski A., Ortiz A. R. MONSSTER: a method for folding globular proteins with a small number of distance restraints. J Mol Biol. 1997 Jan 17;265(2):217–241. doi: 10.1006/jmbi.1996.0720. [DOI] [PubMed] [Google Scholar]
  42. Smith-Brown M. J., Kominos D., Levy R. M. Global folding of proteins using a limited number of distance constraints. Protein Eng. 1993 Aug;6(6):605–614. doi: 10.1093/protein/6.6.605. [DOI] [PubMed] [Google Scholar]
  43. Son H. S., Sansom M. S. Simulation of the packing of idealized transmembrane alpha-helix bundles. Eur Biophys J. 1999;28(6):489–498. doi: 10.1007/s002490050231. [DOI] [PubMed] [Google Scholar]
  44. Steinhoff H. J., Hubbell W. L. Calculation of electron paramagnetic resonance spectra from Brownian dynamics trajectories: application to nitroxide side chains in proteins. Biophys J. 1996 Oct;71(4):2201–2212. doi: 10.1016/S0006-3495(96)79421-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Steinhoff H. J., Radzwill N., Thevis W., Lenz V., Brandenburg D., Antson A., Dodson G., Wollmer A. Determination of interspin distances between spin labels attached to insulin: comparison of electron paramagnetic resonance data with the X-ray structure. Biophys J. 1997 Dec;73(6):3287–3298. doi: 10.1016/S0006-3495(97)78353-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Subramaniam S., Henderson R. Molecular mechanism of vectorial proton translocation by bacteriorhodopsin. Nature. 2000 Aug 10;406(6796):653–657. doi: 10.1038/35020614. [DOI] [PubMed] [Google Scholar]
  47. Tatulian S. A., Cortes D. M., Perozo E. Structural dynamics of the Streptomyces lividans K+ channel (SKC1): secondary structure characterization from FTIR spectroscopy. FEBS Lett. 1998 Feb 20;423(2):205–212. doi: 10.1016/s0014-5793(98)00091-x. [DOI] [PubMed] [Google Scholar]
  48. Weiss S. Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy. Nat Struct Biol. 2000 Sep;7(9):724–729. doi: 10.1038/78941. [DOI] [PubMed] [Google Scholar]
  49. White S. H., Wimley W. C. Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct. 1999;28:319–365. doi: 10.1146/annurev.biophys.28.1.319. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES