Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Nov;81(5):2580–2589. doi: 10.1016/S0006-3495(01)75902-4

Calcium protects differentiating neuroblastoma cells during 50 Hz electromagnetic radiation.

R Tonini 1, M D Baroni 1, E Masala 1, M Micheletti 1, A Ferroni 1, M Mazzanti 1
PMCID: PMC1301726  PMID: 11606272

Abstract

Despite growing concern about electromagnetic radiation, the interaction between 50- to 60-Hz fields and biological structures remains obscure. Epidemiological studies have failed to prove a significantly correlation between exposure to radiation fields and particular pathologies. We demonstrate that a 50- to 60-Hz magnetic field interacts with cell differentiation through two opposing mechanisms: it antagonizes the shift in cell membrane surface charges that occur during the early phases of differentiation and it modulates hyperpolarizing K channels by increasing intracellular Ca. The simultaneous onset of both mechanisms prevents alterations in cell differentiation. We propose that cells are normally protected against electromagnetic insult. Pathologies may arise, however, if intracellular Ca regulation or K channel activation malfunctions.

Full Text

The Full Text of this article is available as a PDF (864.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arcangeli A., Carlà M., Del Bene M. R., Becchetti A., Wanke E., Olivotto M. Polar/apolar compounds induce leukemia cell differentiation by modulating cell-surface potential. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5858–5862. doi: 10.1073/pnas.90.12.5858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arcangeli A., Ricupero L., Olivotto M. Commitment to differentiation of murine erythroleukemia cells involves a modulated plasma membrane depolarization through Ca2+-activated K+ channels. J Cell Physiol. 1987 Sep;132(3):387–400. doi: 10.1002/jcp.1041320302. [DOI] [PubMed] [Google Scholar]
  3. Barbier E., Dufy B., Veyret B. Stimulation of Ca2+ influx in rat pituitary cells under exposure to a 50 Hz magnetic field. Bioelectromagnetics. 1996;17(4):303–311. doi: 10.1002/(SICI)1521-186X(1996)17:4<303::AID-BEM6>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  4. Becchetti A., Arcangeli A., Del Bene M. R., Olivotto M., Wanke E. Intra and extracellular surface charges near Ca2+ channels in neurons and neuroblastoma cells. Biophys J. 1992 Oct;63(4):954–965. doi: 10.1016/S0006-3495(92)81665-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Binggeli R., Weinstein R. C. Deficits in elevating membrane potential of rat fibrosarcoma cells after cell contact. Cancer Res. 1985 Jan;45(1):235–241. [PubMed] [Google Scholar]
  6. Brown D. A., Higashida H. Membrane current responses of NG108-15 mouse neuroblastoma x rat glioma hybrid cells to bradykinin. J Physiol. 1988 Mar;397:167–184. doi: 10.1113/jphysiol.1988.sp016994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown D. A., Higashida H. Voltage- and calcium-activated potassium currents in mouse neuroblastoma x rat glioma hybrid cells. J Physiol. 1988 Mar;397:149–165. doi: 10.1113/jphysiol.1988.sp016993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dubois J. M., Rouzaire-Dubois B. Role of potassium channels in mitogenesis. Prog Biophys Mol Biol. 1993;59(1):1–21. doi: 10.1016/0079-6107(93)90005-5. [DOI] [PubMed] [Google Scholar]
  9. Dörrscheidt-Käfer M. Comparison of the action of La3+ and Ca2+ on contraction threshold and other membrane parameters of frog skeletal muscle. J Membr Biol. 1981;62(1-2):95–103. doi: 10.1007/BF01870203. [DOI] [PubMed] [Google Scholar]
  10. Eichwald C., Walleczek J. Model for magnetic field effects on radical pair recombination in enzyme kinetics. Biophys J. 1996 Aug;71(2):623–631. doi: 10.1016/S0006-3495(96)79263-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Exposure to power-frequency magnetic fields and the risk of childhood cancer. UK Childhood Cancer Study Investigators. Lancet. 1999 Dec 4;354(9194):1925–1931. [PubMed] [Google Scholar]
  12. Fanelli C., Coppola S., Barone R., Colussi C., Gualandi G., Volpe P., Ghibelli L. Magnetic fields increase cell survival by inhibiting apoptosis via modulation of Ca2+ influx. FASEB J. 1999 Jan;13(1):95–102. doi: 10.1096/fasebj.13.1.95. [DOI] [PubMed] [Google Scholar]
  13. Ferroni A., Galli A., Mazzanti M. Functional role of low-voltage-activated dihydropyridine-sensitive Ca channels during the action potential in adult rat sensory neurones. Pflugers Arch. 1996 Apr;431(6):954–963. doi: 10.1007/s004240050091. [DOI] [PubMed] [Google Scholar]
  14. Feychting M., Ahlbom A., Savitz D. Electromagnetic fields and childhood leukemia. Epidemiology. 1998 May;9(3):225–226. doi: 10.1097/00001648-199805000-00001. [DOI] [PubMed] [Google Scholar]
  15. Goodman E. M., Greenebaum B., Marron M. T. Effects of electromagnetic fields on molecules and cells. Int Rev Cytol. 1995;158:279–338. doi: 10.1016/s0074-7696(08)62489-4. [DOI] [PubMed] [Google Scholar]
  16. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  17. Hatch E. E., Linet M. S., Kleinerman R. A., Tarone R. E., Severson R. K., Hartsock C. T., Haines C., Kaune W. T., Friedman D., Robison L. L. Association between childhood acute lymphoblastic leukemia and use of electrical appliances during pregnancy and childhood. Epidemiology. 1998 May;9(3):234–245. [PubMed] [Google Scholar]
  18. Höjevik P., Sandblom J., Galt S., Hamnerius Y. Ca2+ ion transport through patch-clamped cells exposed to magnetic fields. Bioelectromagnetics. 1995;16(1):33–40. doi: 10.1002/bem.2250160109. [DOI] [PubMed] [Google Scholar]
  19. Kajimoto N., Kirpekar S. M. Effect of manganese and lanthanum on spontaneous release of acetylcholine at frog motor nerve terminals. Nat New Biol. 1972 Jan 5;235(53):29–30. doi: 10.1038/newbio235029a0. [DOI] [PubMed] [Google Scholar]
  20. Karabakhtsian R., Broude N., Shalts N., Kochlatyi S., Goodman R., Henderson A. S. Calcium is necessary in the cell response to EM fields. FEBS Lett. 1994 Jul 25;349(1):1–6. doi: 10.1016/0014-5793(94)00618-0. [DOI] [PubMed] [Google Scholar]
  21. Lacy-Hulbert A., Metcalfe J. C., Hesketh R. Biological responses to electromagnetic fields. FASEB J. 1998 Apr;12(6):395–420. doi: 10.1096/fasebj.12.6.395. [DOI] [PubMed] [Google Scholar]
  22. Lacy-Hulbert A., Wilkins R. C., Hesketh T. R., Metcalfe J. C. Cancer risk and electromagnetic fields. Nature. 1995 May 4;375(6526):23–23. doi: 10.1038/375023a0. [DOI] [PubMed] [Google Scholar]
  23. Liburdy R. P. Calcium signaling in lymphocytes and ELF fields. Evidence for an electric field metric and a site of interaction involving the calcium ion channel. FEBS Lett. 1992 Apr 13;301(1):53–59. doi: 10.1016/0014-5793(92)80209-y. [DOI] [PubMed] [Google Scholar]
  24. Liburdy R. P., Callahan D. E., Harland J., Dunham E., Sloma T. R., Yaswen P. Experimental evidence for 60 Hz magnetic fields operating through the signal transduction cascade. Effects on calcium influx and c-MYC mRNA induction. FEBS Lett. 1993 Nov 22;334(3):301–308. doi: 10.1016/0014-5793(93)80699-u. [DOI] [PubMed] [Google Scholar]
  25. Lukyanetz E. A. Diversity and properties of calcium channel types in NG108-15 hybrid cells. Neuroscience. 1998 Nov;87(1):265–274. doi: 10.1016/s0306-4522(98)00057-8. [DOI] [PubMed] [Google Scholar]
  26. Löscher W., Liburdy R. P. Animal and cellular studies on carcinogenic effects of low frequency (50/60-Hz) magnetic fields. Mutat Res. 1998 Apr;410(2):185–220. doi: 10.1016/s1383-5742(97)00039-2. [DOI] [PubMed] [Google Scholar]
  27. Olivotto M., Arcangeli A., Carlà M., Wanke E. Electric fields at the plasma membrane level: a neglected element in the mechanisms of cell signalling. Bioessays. 1996 Jun;18(6):495–504. doi: 10.1002/bies.950180612. [DOI] [PubMed] [Google Scholar]
  28. Reipert B. M., Allan D., Reipert S., Dexter T. M. Apoptosis in haemopoietic progenitor cells exposed to extremely low-frequency magnetic fields. Life Sci. 1997;61(16):1571–1582. doi: 10.1016/s0024-3205(97)00736-4. [DOI] [PubMed] [Google Scholar]
  29. Seidman K. J., Barsuk J. H., Johnson R. F., Weyhenmeyer J. A. Differentiation of NG108-15 neuroblastoma cells by serum starvation or dimethyl sulfoxide results in marked differences in angiotensin II receptor subtype expression. J Neurochem. 1996 Mar;66(3):1011–1018. doi: 10.1046/j.1471-4159.1996.66031011.x. [DOI] [PubMed] [Google Scholar]
  30. Thomson R. A., Michaelson S. M., Nguyen Q. A. Influence of 60-Hertz magnetic fields on leukemia. Bioelectromagnetics. 1988;9(2):149–158. doi: 10.1002/bem.2250090206. [DOI] [PubMed] [Google Scholar]
  31. Walleczek J. Electromagnetic field effects on cells of the immune system: the role of calcium signaling. FASEB J. 1992 Oct;6(13):3177–3185. doi: 10.1096/fasebj.6.13.1397839. [DOI] [PubMed] [Google Scholar]
  32. Wanke E., Carbone E., Testa P. L. K+ conductance modified by a titratable group accessible to protons from the intracellular side of the squid axon membrane. Biophys J. 1979 May;26(2):319–324. doi: 10.1016/S0006-3495(79)85251-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zipes D. P., Mendez C. Action of manganese ions and tetrodotoxin on atrioventricular nodal transmembrane potentials in isolated rabbit hearts. Circ Res. 1973 Apr;32(4):447–454. doi: 10.1161/01.res.32.4.447. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES