Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Nov;81(5):2716–2728. doi: 10.1016/S0006-3495(01)75914-0

Osmotically induced shape changes of large unilamellar vesicles measured by dynamic light scattering.

J Pencer 1, G F White 1, F R Hallett 1
PMCID: PMC1301738  PMID: 11606284

Abstract

Static and dynamic light scattering measurements have been used to characterize the size, size distribution, and shape of extruded vesicles under isotonic conditions. Dynamic light scattering was then used to characterize osmotically induced shape changes by monitoring changes in the hydrodynamic radius (R(h)) of large unilamellar vesicles (LUVs). These changes are compared to those predicted for several shapes that appear in trajectories through the phase diagram of the area difference elasticity (ADE) model (. Phys. Rev. E. 52:6623-6634). Measurements were performed on dioleoylphosphatidylcholine (DOPC) vesicles using two membrane-impermeant osmolytes (NaCl and sucrose) and a membrane-permeant osmolyte (urea). For all conditions, we were able to produce low-polydispersity, nearly spherical vesicles, which are essential for resolving well-defined volume changes and consequent shape changes. Hyper-osmotic dilutions of DOPC vesicles in urea produced no change in R(h), whereas similar dilutions in NaCl or sucrose caused reductions in vesicle volume resulting in observable changes to R(h). Under conditions similar to those of this study, the ADE model predicts an evolution from spherical to prolate then oblate shapes on increasing volume reduction of LUVs. However, we found that DOPC vesicles became oblate at all applied volume reductions.

Full Text

The Full Text of this article is available as a PDF (198.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agirre A., Flach C., Goñi F. M., Mendelsohn R., Valpuesta J. M., Wu F., Nieva J. L. Interactions of the HIV-1 fusion peptide with large unilamellar vesicles and monolayers. A cryo-TEM and spectroscopic study. Biochim Biophys Acta. 2000 Jul 31;1467(1):153–164. doi: 10.1016/s0005-2736(00)00214-5. [DOI] [PubMed] [Google Scholar]
  2. Bagatolli L. A., Gratton E. Two-photon fluorescence microscopy observation of shape changes at the phase transition in phospholipid giant unilamellar vesicles. Biophys J. 1999 Oct;77(4):2090–2101. doi: 10.1016/S0006-3495(99)77050-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beney L., Linares E., Ferret E., Gervais P. Influence of the shape of phospholipid vesicles on the measurement of their size by photon correlation spectroscopy. Eur Biophys J. 1998;27(6):567–574. doi: 10.1007/s002490050167. [DOI] [PubMed] [Google Scholar]
  4. Booth P. J., Riley M. L., Flitsch S. L., Templer R. H., Farooq A., Curran A. R., Chadborn N., Wright P. Evidence that bilayer bending rigidity affects membrane protein folding. Biochemistry. 1997 Jan 7;36(1):197–203. doi: 10.1021/bi962200m. [DOI] [PubMed] [Google Scholar]
  5. Burack W. R., Dibble A. R., Allietta M. M., Biltonen R. L. Changes in vesicle morphology induced by lateral phase separation modulate phospholipase A2 activity. Biochemistry. 1997 Aug 26;36(34):10551–10557. doi: 10.1021/bi970509f. [DOI] [PubMed] [Google Scholar]
  6. Edwards K., Johnsson M., Karlsson G., Silvander M. Effect of polyethyleneglycol-phospholipids on aggregate structure in preparations of small unilamellar liposomes. Biophys J. 1997 Jul;73(1):258–266. doi: 10.1016/S0006-3495(97)78066-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ertel A., Marangoni A. G., Marsh J., Hallett F. R., Wood J. M. Mechanical properties of vesicles. I. Coordinated analysis of osmotic swelling and lysis. Biophys J. 1993 Feb;64(2):426–434. doi: 10.1016/S0006-3495(93)81383-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gregoriadis G. Engineering liposomes for drug delivery: progress and problems. Trends Biotechnol. 1995 Dec;13(12):527–537. doi: 10.1016/S0167-7799(00)89017-4. [DOI] [PubMed] [Google Scholar]
  9. Hallett F. R., Nickel B., Samuels C., Krygsman P. H. Determination of vesicle size distributions by freeze-fracture electron microscopy. J Electron Microsc Tech. 1991 Apr;17(4):459–466. doi: 10.1002/jemt.1060170409. [DOI] [PubMed] [Google Scholar]
  10. Hallett F. R., Watton J., Krygsman P. Vesicle sizing: Number distributions by dynamic light scattering. Biophys J. 1991 Feb;59(2):357–362. doi: 10.1016/S0006-3495(91)82229-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Helfrich W. Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch C. 1973 Nov-Dec;28(11):693–703. doi: 10.1515/znc-1973-11-1209. [DOI] [PubMed] [Google Scholar]
  12. Hunter D. G., Frisken B. J. Effect of extrusion pressure and lipid properties on the size and polydispersity of lipid vesicles. Biophys J. 1998 Jun;74(6):2996–3002. doi: 10.1016/S0006-3495(98)78006-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jaric M, Seifert U, Wintz W, Wortis M. Vesicular instabilities: The prolate-to-oblate transition and other shape instabilities of fluid bilayer membranes. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Dec;52(6):6623–6634. doi: 10.1103/physreve.52.6623. [DOI] [PubMed] [Google Scholar]
  14. Jin A. J., Huster D., Gawrisch K., Nossal R. Light scattering characterization of extruded lipid vesicles. Eur Biophys J. 1999;28(3):187–199. doi: 10.1007/s002490050199. [DOI] [PubMed] [Google Scholar]
  15. Korgel B. A., van Zanten J. H., Monbouquette H. G. Vesicle size distributions measured by flow field-flow fractionation coupled with multiangle light scattering. Biophys J. 1998 Jun;74(6):3264–3272. doi: 10.1016/S0006-3495(98)78033-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kölchens S., Ramaswami V., Birgenheier J., Nett L., O'Brien D. F. Quasi-elastic light scattering determination of the size distribution of extruded vesicles. Chem Phys Lipids. 1993 Apr;65(1):1–10. doi: 10.1016/0009-3084(93)90076-f. [DOI] [PubMed] [Google Scholar]
  17. Lerebours B., Wehrli E., Hauser H. Thermodynamic stability and osmotic sensitivity of small unilamellar phosphatidylcholine vesicles. Biochim Biophys Acta. 1993 Oct 10;1152(1):49–60. doi: 10.1016/0005-2736(93)90230-w. [DOI] [PubMed] [Google Scholar]
  18. MacDonald R. C., MacDonald R. I., Menco B. P., Takeshita K., Subbarao N. K., Hu L. R. Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim Biophys Acta. 1991 Jan 30;1061(2):297–303. doi: 10.1016/0005-2736(91)90295-j. [DOI] [PubMed] [Google Scholar]
  19. Miao L, Seifert U, Wortis M, Döbereiner HG. Budding transitions of fluid-bilayer vesicles: The effect of area-difference elasticity. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 Jun;49(6):5389–5407. doi: 10.1103/physreve.49.5389. [DOI] [PubMed] [Google Scholar]
  20. Mui B. L., Cullis P. R., Evans E. A., Madden T. D. Osmotic properties of large unilamellar vesicles prepared by extrusion. Biophys J. 1993 Feb;64(2):443–453. doi: 10.1016/S0006-3495(93)81385-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mui B. L., Döbereiner H. G., Madden T. D., Cullis P. R. Influence of transbilayer area asymmetry on the morphology of large unilamellar vesicles. Biophys J. 1995 Sep;69(3):930–941. doi: 10.1016/S0006-3495(95)79967-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Paula S., Volkov A. G., Deamer D. W. Permeation of halide anions through phospholipid bilayers occurs by the solubility-diffusion mechanism. Biophys J. 1998 Jan;74(1):319–327. doi: 10.1016/S0006-3495(98)77789-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Paula S., Volkov A. G., Van Hoek A. N., Haines T. H., Deamer D. W. Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness. Biophys J. 1996 Jan;70(1):339–348. doi: 10.1016/S0006-3495(96)79575-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rawicz W., Olbrich K. C., McIntosh T., Needham D., Evans E. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J. 2000 Jul;79(1):328–339. doi: 10.1016/S0006-3495(00)76295-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Seifert U, Berndl K, Lipowsky R. Shape transformations of vesicles: Phase diagram for spontaneous- curvature and bilayer-coupling models. Phys Rev A. 1991 Jul 15;44(2):1182–1202. doi: 10.1103/physreva.44.1182. [DOI] [PubMed] [Google Scholar]
  26. Svetina S., Zeks B. Bilayer couple hypothesis of red cell shape transformations and osmotic hemolysis. Biomed Biochim Acta. 1983;42(11-12):S86–S90. [PubMed] [Google Scholar]
  27. Talmon Y., Burns J. L., Chestnut M. H., Siegel D. P. Time-resolved cryotransmission electron microscopy. J Electron Microsc Tech. 1990 Jan;14(1):6–12. doi: 10.1002/jemt.1060140103. [DOI] [PubMed] [Google Scholar]
  28. White G. F., Racher K. I., Lipski A., Hallett F. R., Wood J. M. Physical properties of liposomes and proteoliposomes prepared from Escherichia coli polar lipids. Biochim Biophys Acta. 2000 Sep 29;1468(1-2):175–186. doi: 10.1016/s0005-2736(00)00255-8. [DOI] [PubMed] [Google Scholar]
  29. White G., Pencer J., Nickel B. G., Wood J. M., Hallett F. R. Optical changes in unilamellar vesicles experiencing osmotic stress. Biophys J. 1996 Nov;71(5):2701–2715. doi: 10.1016/S0006-3495(96)79461-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wimley W. C., Thompson T. E. Exchange and flip-flop of dimyristoylphosphatidylcholine in liquid-crystalline, gel, and two-component, two-phase large unilamellar vesicles. Biochemistry. 1990 Feb 6;29(5):1296–1303. doi: 10.1021/bi00457a027. [DOI] [PubMed] [Google Scholar]
  31. Wood J. M. Osmosensing by bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev. 1999 Mar;63(1):230–262. doi: 10.1128/mmbr.63.1.230-262.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES