Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Nov;81(5):2729–2736. doi: 10.1016/S0006-3495(01)75915-2

Cholesterol monohydrate nucleation in ultrathin films on water.

H Rapaport 1, I Kuzmenko 1, S Lafont 1, K Kjaer 1, P B Howes 1, J Als-Nielsen 1, M Lahav 1, L Leiserowitz 1
PMCID: PMC1301739  PMID: 11606285

Abstract

The growth of a cholesterol crystalline phase, three molecular layers thick at the air-water interface, was monitored by grazing incidence x-ray diffraction and x-ray reflectivity. Upon compression, a cholesterol film transforms from a monolayer of trigonal symmetry and low crystallinity to a trilayer, composed of a highly crystalline bilayer in a rectangular lattice and a disordered top cholesterol layer. This system undergoes a phase transition into a crystalline trilayer incorporating ordered water between the hydroxyl groups of the top and middle sterol layers in an arrangement akin to the triclinic 3-D crystal structure of cholesterol x H(2)O. By comparison, the cholesterol derivative stigmasterol transforms, upon compression, directly into a crystalline trilayer in the rectangular lattice. These results may contribute to an understanding of the onset of cholesterol crystallization in pathological lipid deposits.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOGREN H., LARSSON K. AN X-RAY-DIFFRACTION STUDY OF CRYSTALLINE CHOLESTEROL IN SOME PATHOLOGICAL DEPOSITS IN MAN. Biochim Biophys Acta. 1963 Jul 23;75:65–69. doi: 10.1016/0006-3002(63)90580-8. [DOI] [PubMed] [Google Scholar]
  2. Brown D. A., London E. Structure and origin of ordered lipid domains in biological membranes. J Membr Biol. 1998 Jul 15;164(2):103–114. doi: 10.1007/s002329900397. [DOI] [PubMed] [Google Scholar]
  3. Craven B. M. Crystal structure of cholesterol monohydrate. Nature. 1976 Apr 22;260(5553):727–729. doi: 10.1038/260727a0. [DOI] [PubMed] [Google Scholar]
  4. Guo W., Morrisett J. D., DeBakey M. E., Lawrie G. M., Hamilton J. A. Quantification in situ of crystalline cholesterol and calcium phosphate hydroxyapatite in human atherosclerotic plaques by solid-state magic angle spinning NMR. Arterioscler Thromb Vasc Biol. 2000 Jun;20(6):1630–1636. doi: 10.1161/01.atv.20.6.1630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hsu L. Y., Nordman C. E. Phase transition and crystal structure of the 37 degrees C form of cholesterol. Science. 1983 May 6;220(4597):604–606. doi: 10.1126/science.6836303. [DOI] [PubMed] [Google Scholar]
  6. Kaplun A., Talmon Y., Konikoff F. M., Rubin M., Eitan A., Tadmor M., Lichtenberg D. Direct visualization of lipid aggregates in native human bile by light- and cryo-transmission electron-microscopy. FEBS Lett. 1994 Feb 28;340(1-2):78–82. doi: 10.1016/0014-5793(94)80176-2. [DOI] [PubMed] [Google Scholar]
  7. Konikoff F. M., Chung D. S., Donovan J. M., Small D. M., Carey M. C. Filamentous, helical, and tubular microstructures during cholesterol crystallization from bile. Evidence that cholesterol does not nucleate classic monohydrate plates. J Clin Invest. 1992 Sep;90(3):1155–1160. doi: 10.1172/JCI115935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Konikoff F. M., Danino D., Weihs D., Rubin M., Talmon Y. Microstructural evolution of lipid aggregates in nucleating model and human biles visualized by cryogenic transmission electron microscopy. Hepatology. 2000 Feb;31(2):261–268. doi: 10.1002/hep.510310202. [DOI] [PubMed] [Google Scholar]
  9. Konikoff F. M., Laufer H., Messer G., Gilat T. Monitoring cholesterol crystallization from lithogenic model bile by time-lapse density gradient ultracentrifugation. J Hepatol. 1997 Mar;26(3):703–710. doi: 10.1016/s0168-8278(97)80438-2. [DOI] [PubMed] [Google Scholar]
  10. Loomis C. R., Shipley G. G., Small D. M. The phase behavior of hydrated cholesterol. J Lipid Res. 1979 May;20(4):525–535. [PubMed] [Google Scholar]
  11. Shieh H. S., Hoard L. G., Nordman C. E. Crystal structure of anhydrous cholesterol. Nature. 1977 May 19;267(5608):287–289. doi: 10.1038/267287a0. [DOI] [PubMed] [Google Scholar]
  12. Shih MC, Bohanon TM, Mikrut JM, Zschack P, Dutta P. X-ray-diffraction study of the superliquid region of the phase diagram of a Langmuir monolayer. Phys Rev A. 1992 Apr 15;45(8):5734–5737. doi: 10.1103/physreva.45.5734. [DOI] [PubMed] [Google Scholar]
  13. Simons K., Ikonen E. How cells handle cholesterol. Science. 2000 Dec 1;290(5497):1721–1726. doi: 10.1126/science.290.5497.1721. [DOI] [PubMed] [Google Scholar]
  14. Small D. M. George Lyman Duff memorial lecture. Progression and regression of atherosclerotic lesions. Insights from lipid physical biochemistry. Arteriosclerosis. 1988 Mar-Apr;8(2):103–129. doi: 10.1161/01.atv.8.2.103. [DOI] [PubMed] [Google Scholar]
  15. Small D. M., Shipley G. G. Physical-chemical basis of lipid deposition in atherosclerosis. Science. 1974 Jul 19;185(4147):222–229. doi: 10.1126/science.185.4147.222. [DOI] [PubMed] [Google Scholar]
  16. Sömjen G. J., Lipka G., Schulthess G., Koch M. H., Wachtel E., Gilat T., Hauser H. Behavior of cholesterol and spin-labeled cholestane in model bile systems studied by electron spin resonance and synchrotron x-ray. Biophys J. 1995 Jun;68(6):2342–2349. doi: 10.1016/S0006-3495(95)80416-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wang D. Q., Carey M. C. Characterization of crystallization pathways during cholesterol precipitation from human gallbladder biles: identical pathways to corresponding model biles with three predominating sequences. J Lipid Res. 1996 Dec;37(12):2539–2549. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES