Abstract
Solid-state (13)C NMR spectroscopy was used to investigate the three-dimensional structure of melittin as lyophilized powder and in ditetradecylphosphatidylcholine (DTPC) membranes. The distance between specifically labeled carbons in analogs [1-(13)C]Gly3-[2-(13)C]Ala4, [1-(13)C]Gly3-[2-(13)C]Leu6, [1-(13)C]Leu13-[2-(13)C]Ala15, [2-(13)C]Leu13-[1-(13)C]Ala15, and [1-(13)C]Leu13-[2-(13)C]Leu16 was measured by rotational resonance. As expected, the internuclear distances measured in [1-(13)C]Gly3-[2-(13)C]Ala4 and [1-(13)C]Gly3-[2-(13)C]Leu6 were consistent with alpha-helical structure in the N-terminus irrespective of environment. The internuclear distances measured in [1-(13)C]Leu13-[2-(13)C]Ala15, [2-(13)C]Leu13-[1-(13)C]Ala15, and [1-(13)C]Leu13-[2-(13)C]Leu16 revealed, via molecular modeling, some dependence upon environment for conformation in the region of the bend in helical structure induced by Pro14. A slightly larger interhelical angle between the N- and C-terminal helices was indicated for peptide in dry or hydrated gel state DTPC (139 degrees -145 degrees ) than in lyophilized powder (121 degrees -139 degrees ) or crystals (129 degrees ). The angle, however, is not as great as deduced for melittin in aligned bilayers of DTPC in the liquid-crystalline state (approximately 160 degrees ). The study illustrates the utility of rotational resonance in determining local structure within peptide-lipid complexes.
Full Text
The Full Text of this article is available as a PDF (174.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bachar M., Becker O. M. Protein-induced membrane disorder: a molecular dynamics study of melittin in a dipalmitoylphosphatidylcholine bilayer. Biophys J. 2000 Mar;78(3):1359–1375. doi: 10.1016/S0006-3495(00)76690-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barlow D. J., Thornton J. M. Helix geometry in proteins. J Mol Biol. 1988 Jun 5;201(3):601–619. doi: 10.1016/0022-2836(88)90641-9. [DOI] [PubMed] [Google Scholar]
- Bazzo R., Tappin M. J., Pastore A., Harvey T. S., Carver J. A., Campbell I. D. The structure of melittin. A 1H-NMR study in methanol. Eur J Biochem. 1988 Apr 5;173(1):139–146. doi: 10.1111/j.1432-1033.1988.tb13977.x. [DOI] [PubMed] [Google Scholar]
- Bazzo R., Tappin M. J., Pastore A., Harvey T. S., Carver J. A., Campbell I. D. The structure of melittin. A 1H-NMR study in methanol. Eur J Biochem. 1988 Apr 5;173(1):139–146. doi: 10.1111/j.1432-1033.1988.tb13977.x. [DOI] [PubMed] [Google Scholar]
- Bello J., Bello H. R., Granados E. Conformation and aggregation of melittin: dependence on pH and concentration. Biochemistry. 1982 Feb 2;21(3):461–465. doi: 10.1021/bi00532a007. [DOI] [PubMed] [Google Scholar]
- Bernèche S., Nina M., Roux B. Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane. Biophys J. 1998 Oct;75(4):1603–1618. doi: 10.1016/S0006-3495(98)77604-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dawson C. R., Drake A. F., Helliwell J., Hider R. C. The interaction of bee melittin with lipid bilayer membranes. Biochim Biophys Acta. 1978 Jun 16;510(1):75–86. doi: 10.1016/0005-2736(78)90131-1. [DOI] [PubMed] [Google Scholar]
- Deisenhofer J., Michel H. The Photosynthetic Reaction Center from the Purple Bacterium Rhodopseudomonas viridis. Science. 1989 Sep 29;245(4925):1463–1473. doi: 10.1126/science.245.4925.1463. [DOI] [PubMed] [Google Scholar]
- Dempsey C. E. The actions of melittin on membranes. Biochim Biophys Acta. 1990 May 7;1031(2):143–161. doi: 10.1016/0304-4157(90)90006-x. [DOI] [PubMed] [Google Scholar]
- Drake A. F., Hider R. C. The structure of melittin in lipid bilayer membranes. Biochim Biophys Acta. 1979 Aug 7;555(2):371–373. doi: 10.1016/0005-2736(79)90178-0. [DOI] [PubMed] [Google Scholar]
- Dufourc E. J., Mayer C., Stohrer J., Althoff G., Kothe G. Dynamics of phosphate head groups in biomembranes. Comprehensive analysis using phosphorus-31 nuclear magnetic resonance lineshape and relaxation time measurements. Biophys J. 1992 Jan;61(1):42–57. doi: 10.1016/S0006-3495(92)81814-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fields C. G., Fields G. B., Noble R. L., Cross T. A. Solid phase peptide synthesis of 15N-gramicidins A, B, and C and high performance liquid chromatographic purification. Int J Pept Protein Res. 1989 Apr;33(4):298–303. doi: 10.1111/j.1399-3011.1989.tb01285.x. [DOI] [PubMed] [Google Scholar]
- Güntert P., Mumenthaler C., Wüthrich K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol. 1997 Oct 17;273(1):283–298. doi: 10.1006/jmbi.1997.1284. [DOI] [PubMed] [Google Scholar]
- Henderson R., Baldwin J. M., Ceska T. A., Zemlin F., Beckmann E., Downing K. H. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol. 1990 Jun 20;213(4):899–929. doi: 10.1016/S0022-2836(05)80271-2. [DOI] [PubMed] [Google Scholar]
- Hing F. S., Maulik P. R., Shipley G. G. Structure and interactions of ether- and ester-linked phosphatidylethanolamines. Biochemistry. 1991 Sep 17;30(37):9007–9015. doi: 10.1021/bi00101a014. [DOI] [PubMed] [Google Scholar]
- Hirsh D. J., Hammer J., Maloy W. L., Blazyk J., Schaefer J. Secondary structure and location of a magainin analogue in synthetic phospholipid bilayers. Biochemistry. 1996 Oct 1;35(39):12733–12741. doi: 10.1021/bi961468a. [DOI] [PubMed] [Google Scholar]
- Hristova K., Dempsey C. E., White S. H. Structure, location, and lipid perturbations of melittin at the membrane interface. Biophys J. 2001 Feb;80(2):801–811. doi: 10.1016/S0006-3495(01)76059-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaiser E., Colescott R. L., Bossinger C. D., Cook P. I. Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem. 1970 Apr;34(2):595–598. doi: 10.1016/0003-2697(70)90146-6. [DOI] [PubMed] [Google Scholar]
- Kim J. T., Mattai J., Shipley G. G. Bilayer interactions of ether- and ester-linked phospholipids: dihexadecyl- and dipalmitoylphosphatidylcholines. Biochemistry. 1987 Oct 20;26(21):6599–6603. doi: 10.1021/bi00395a006. [DOI] [PubMed] [Google Scholar]
- Kim J. T., Mattai J., Shipley G. G. Gel phase polymorphism in ether-linked dihexadecylphosphatidylcholine bilayers. Biochemistry. 1987 Oct 20;26(21):6592–6598. doi: 10.1021/bi00395a005. [DOI] [PubMed] [Google Scholar]
- Knöppel E., Eisenberg D., Wickner W. Interactions of melittin, a preprotein model, with detergents. Biochemistry. 1979 Sep 18;18(19):4177–4181. doi: 10.1021/bi00586a021. [DOI] [PubMed] [Google Scholar]
- Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
- Laggner P., Lohner K., Koynova R., Tenchov B. The influence of low amounts of cholesterol on the interdigitated gel phase of hydrated dihexadecylphosphatidylcholine. Chem Phys Lipids. 1991 Dec;60(2):153–161. doi: 10.1016/0009-3084(91)90038-d. [DOI] [PubMed] [Google Scholar]
- Langlais D. B., Hodges R. S., Davis J. H. 13C-13C rotational resonance in a transmembrane peptide: a comparison of the fluid and gel phases. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 May;59(5 Pt B):5945–5957. doi: 10.1103/physreve.59.5945. [DOI] [PubMed] [Google Scholar]
- Lin J. H., Baumgaertner A. Stability of a melittin pore in a lipid bilayer: a molecular dynamics study. Biophys J. 2000 Apr;78(4):1714–1724. doi: 10.1016/S0006-3495(00)76723-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naito A., Nagao T., Norisada K., Mizuno T., Tuzi S., Saitô H. Conformation and dynamics of melittin bound to magnetically oriented lipid bilayers by solid-state (31)P and (13)C NMR spectroscopy. Biophys J. 2000 May;78(5):2405–2417. doi: 10.1016/S0006-3495(00)76784-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okada A., Wakamatsu K., Miyazawa T., Higashijima T. Vesicle-bound conformation of melittin: transferred nuclear Overhauser enhancement analysis in the presence of perdeuterated phosphatidylcholine vesicles. Biochemistry. 1994 Aug 16;33(32):9438–9446. doi: 10.1021/bi00198a009. [DOI] [PubMed] [Google Scholar]
- Otoda K., Kimura S., Imanishi Y. Interaction of melittin derivatives with lipid bilayer membrane. Role of basic residues at the C-terminal and their replacement with lactose. Biochim Biophys Acta. 1992 Nov 23;1112(1):1–6. doi: 10.1016/0005-2736(92)90245-h. [DOI] [PubMed] [Google Scholar]
- Rivett D. E., Kirkpatrick A., Hewish D. R., Reilly W., Werkmeister J. A. Dimerization of truncated melittin analogues results in cytolytic peptides. Biochem J. 1996 Jun 1;316(Pt 2):525–529. doi: 10.1042/bj3160525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seelig J. 31P nuclear magnetic resonance and the head group structure of phospholipids in membranes. Biochim Biophys Acta. 1978 Jul 31;515(2):105–140. doi: 10.1016/0304-4157(78)90001-1. [DOI] [PubMed] [Google Scholar]
- Segrest J. P., De Loof H., Dohlman J. G., Brouillette C. G., Anantharamaiah G. M. Amphipathic helix motif: classes and properties. Proteins. 1990;8(2):103–117. doi: 10.1002/prot.340080202. [DOI] [PubMed] [Google Scholar]
- Sessa G., Freer J. H., Colacicco G., Weissmann G. Interaction of alytic polypeptide, melittin, with lipid membrane systems. J Biol Chem. 1969 Jul 10;244(13):3575–3582. [PubMed] [Google Scholar]
- Smith R., Separovic F., Milne T. J., Whittaker A., Bennett F. M., Cornell B. A., Makriyannis A. Structure and orientation of the pore-forming peptide, melittin, in lipid bilayers. J Mol Biol. 1994 Aug 19;241(3):456–466. doi: 10.1006/jmbi.1994.1520. [DOI] [PubMed] [Google Scholar]
- Talbot J. C., Dufourcq J., de Bony J., Faucon J. F., Lussan C. Conformational change and self association of monomeric melittin. FEBS Lett. 1979 Jun 1;102(1):191–193. doi: 10.1016/0014-5793(79)80957-6. [DOI] [PubMed] [Google Scholar]
- Terwilliger T. C., Eisenberg D. The structure of melittin. II. Interpretation of the structure. J Biol Chem. 1982 Jun 10;257(11):6016–6022. [PubMed] [Google Scholar]
- Thompson L. K., McDermott A. E., Raap J., van der Wielen C. M., Lugtenburg J., Herzfeld J., Griffin R. G. Rotational resonance NMR study of the active site structure in bacteriorhodopsin: conformation of the Schiff base linkage. Biochemistry. 1992 Sep 1;31(34):7931–7938. doi: 10.1021/bi00149a026. [DOI] [PubMed] [Google Scholar]
- Tosteson M. T., Tosteson D. C. The sting. Melittin forms channels in lipid bilayers. Biophys J. 1981 Oct;36(1):109–116. doi: 10.1016/S0006-3495(81)84719-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vogel H. Comparison of the conformation and orientation of alamethicin and melittin in lipid membranes. Biochemistry. 1987 Jul 14;26(14):4562–4572. doi: 10.1021/bi00388a060. [DOI] [PubMed] [Google Scholar]
- Vogel H. Incorporation of melittin into phosphatidylcholine bilayers. Study of binding and conformational changes. FEBS Lett. 1981 Nov 2;134(1):37–42. doi: 10.1016/0014-5793(81)80545-5. [DOI] [PubMed] [Google Scholar]
- Vogel H., Jähnig F. The structure of melittin in membranes. Biophys J. 1986 Oct;50(4):573–582. doi: 10.1016/S0006-3495(86)83497-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warwicker J., Watson H. C. Calculation of the electric potential in the active site cleft due to alpha-helix dipoles. J Mol Biol. 1982 Jun 5;157(4):671–679. doi: 10.1016/0022-2836(82)90505-8. [DOI] [PubMed] [Google Scholar]