Abstract
Fifteen percent of the mutations causing familial hypertrophic cardiomyopathy are in the troponin T gene. Most mutations are clustered between residues 79 and 179, a region known to bind to tropomyosin at the C-terminus near the complex between the N- and C-termini. Nine mutations were introduced into a troponin T fragment, Gly-hcTnT(70-170), that is soluble, alpha-helical, binds to tropomyosin, promotes the binding of tropomyosin to actin, and stabilizes an overlap complex of N-terminal and C-terminal tropomyosin peptides. Mutations between residues 92 and 110 (Arg92Leu, Arg92Gln, Arg92Trp, Arg94Leu, Ala104Val, and Phe110Ile) impair tropomyosin-dependent functions of troponin T. Except for Ala104Val, these mutants bound less strongly to a tropomyosin affinity column and were less able to stabilize the TM overlap complex, effects that were correlated with increased stability of the troponin T, measured using circular dichroism. All were less effective in promoting the binding of tropomyosin to actin. Mutations within residues 92-110 may cause disease because of altered interaction with tropomyosin at the overlap region, critical for cooperative actin binding and regulatory function. A model for a five-chained coiled-coil for troponin T in the tropomyosin overlap complex is presented. Mutations outside the region (Ile79Asn, Delta 160Glu, and Glu163Lys) functioned normally and must cause disease by another mechanism.
Full Text
The Full Text of this article is available as a PDF (321.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bonne G., Carrier L., Richard P., Hainque B., Schwartz K. Familial hypertrophic cardiomyopathy: from mutations to functional defects. Circ Res. 1998 Sep 21;83(6):580–593. doi: 10.1161/01.res.83.6.580. [DOI] [PubMed] [Google Scholar]
- Brisson J. R., Golosinska K., Smillie L. B., Sykes B. D. Interaction of tropomyosin and troponin T: a proton nuclear magnetic resonance study. Biochemistry. 1986 Aug 12;25(16):4548–4555. doi: 10.1021/bi00364a014. [DOI] [PubMed] [Google Scholar]
- Böhm G., Muhr R., Jaenicke R. Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Eng. 1992 Apr;5(3):191–195. doi: 10.1093/protein/5.3.191. [DOI] [PubMed] [Google Scholar]
- Cabral-Lilly D., Tobacman L. S., Mehegan J. P., Cohen C. Molecular polarity in tropomyosin-troponin T co-crystals. Biophys J. 1997 Oct;73(4):1763–1770. doi: 10.1016/S0006-3495(97)78206-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chou P. Y., Fasman G. D. Prediction of beta-turns. Biophys J. 1979 Jun;26(3):367–383. doi: 10.1016/S0006-3495(79)85259-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chou P. Y., Fasman G. D. Prediction of protein conformation. Biochemistry. 1974 Jan 15;13(2):222–245. doi: 10.1021/bi00699a002. [DOI] [PubMed] [Google Scholar]
- Cohen C., Caspar D. L., Parry D. A., Lucas R. M. Tropomyosin crystal dynamics. Cold Spring Harb Symp Quant Biol. 1972;36:205–216. doi: 10.1101/sqb.1972.036.01.028. [DOI] [PubMed] [Google Scholar]
- Cohen C., Parry D. A. Alpha-helical coiled coils and bundles: how to design an alpha-helical protein. Proteins. 1990;7(1):1–15. doi: 10.1002/prot.340070102. [DOI] [PubMed] [Google Scholar]
- D'Cruz L. G., Baboonian C., Phillimore H. E., Taylor R., Elliott P. M., Varnava A., Davison F., McKenna W. J., Carter N. D. Cytosine methylation confers instability on the cardiac troponin T gene in hypertrophic cardiomyopathy. J Med Genet. 2000 Sep;37(9):E18–E18. doi: 10.1136/jmg.37.9.e18. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flicker P. F., Phillips G. N., Jr, Cohen C. Troponin and its interactions with tropomyosin. An electron microscope study. J Mol Biol. 1982 Dec 5;162(2):495–501. doi: 10.1016/0022-2836(82)90540-x. [DOI] [PubMed] [Google Scholar]
- Forissier J. F., Carrier L., Farza H., Bonne G., Bercovici J., Richard P., Hainque B., Townsend P. J., Yacoub M. H., Fauré S. Codon 102 of the cardiac troponin T gene is a putative hot spot for mutations in familial hypertrophic cardiomyopathy. Circulation. 1996 Dec 15;94(12):3069–3073. doi: 10.1161/01.cir.94.12.3069. [DOI] [PubMed] [Google Scholar]
- GOA J. A micro biuret method for protein determination; determination of total protein in cerebrospinal fluid. Scand J Clin Lab Invest. 1953;5(3):218–222. doi: 10.3109/00365515309094189. [DOI] [PubMed] [Google Scholar]
- Geeves M. A., Lehrer S. S. Dynamics of the muscle thin filament regulatory switch: the size of the cooperative unit. Biophys J. 1994 Jul;67(1):273–282. doi: 10.1016/S0006-3495(94)80478-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordon A. M., Homsher E., Regnier M. Regulation of contraction in striated muscle. Physiol Rev. 2000 Apr;80(2):853–924. doi: 10.1152/physrev.2000.80.2.853. [DOI] [PubMed] [Google Scholar]
- Greenfield N. J., Hitchcock-DeGregori S. E. The stability of tropomyosin, a two-stranded coiled-coil protein, is primarily a function of the hydrophobicity of residues at the helix-helix interface. Biochemistry. 1995 Dec 26;34(51):16797–16805. doi: 10.1021/bi00051a030. [DOI] [PubMed] [Google Scholar]
- Greenfield N. J., Montelione G. T., Farid R. S., Hitchcock-DeGregori S. E. The structure of the N-terminus of striated muscle alpha-tropomyosin in a chimeric peptide: nuclear magnetic resonance structure and circular dichroism studies. Biochemistry. 1998 May 26;37(21):7834–7843. doi: 10.1021/bi973167m. [DOI] [PubMed] [Google Scholar]
- Hammell R. L., Hitchcock-DeGregori S. E. Mapping the functional domains within the carboxyl terminus of alpha-tropomyosin encoded by the alternatively spliced ninth exon. J Biol Chem. 1996 Feb 23;271(8):4236–4242. doi: 10.1074/jbc.271.8.4236. [DOI] [PubMed] [Google Scholar]
- Hammell R. L., Hitchcock-DeGregori S. E. The sequence of the alternatively spliced sixth exon of alpha-tropomyosin is critical for cooperative actin binding but not for interaction with troponin. J Biol Chem. 1997 Sep 5;272(36):22409–22416. doi: 10.1074/jbc.272.36.22409. [DOI] [PubMed] [Google Scholar]
- Harada K., Takahashi-Yanaga F., Minakami R., Morimoto S., Ohtsuki I. Functional consequences of the deletion mutation deltaGlu160 in human cardiac troponin T. J Biochem. 2000 Feb;127(2):263–268. doi: 10.1093/oxfordjournals.jbchem.a022603. [DOI] [PubMed] [Google Scholar]
- Heeley D. H., Golosinska K., Smillie L. B. The effects of troponin T fragments T1 and T2 on the binding of nonpolymerizable tropomyosin to F-actin in the presence and absence of troponin I and troponin C. J Biol Chem. 1987 Jul 25;262(21):9971–9978. [PubMed] [Google Scholar]
- Hernandez O. M., Housmans P. R., Potter J. D. Invited Review: pathophysiology of cardiac muscle contraction and relaxation as a result of alterations in thin filament regulation. J Appl Physiol (1985) 2001 Mar;90(3):1125–1136. doi: 10.1152/jappl.2001.90.3.1125. [DOI] [PubMed] [Google Scholar]
- Hill L. E., Mehegan J. P., Butters C. A., Tobacman L. S. Analysis of troponin-tropomyosin binding to actin. Troponin does not promote interactions between tropomyosin molecules. J Biol Chem. 1992 Aug 15;267(23):16106–16113. [PubMed] [Google Scholar]
- Hinkle A., Goranson A., Butters C. A., Tobacman L. S. Roles for the troponin tail domain in thin filament assembly and regulation. A deletional study of cardiac troponin T. J Biol Chem. 1999 Mar 12;274(11):7157–7164. doi: 10.1074/jbc.274.11.7157. [DOI] [PubMed] [Google Scholar]
- Hitchcock-De Gregori S. E., Mandala S., Sachs G. A. Changes in actin lysine reactivities during polymerization detected using a competitive labeling method. J Biol Chem. 1982 Nov 10;257(21):12573–12580. [PubMed] [Google Scholar]
- Hitchcock-DeGregori S. E., Lewis S. F., Chou T. M. Tropomyosin lysine reactivities and relationship to coiled-coil structure. Biochemistry. 1985 Jun 18;24(13):3305–3314. doi: 10.1021/bi00334a035. [DOI] [PubMed] [Google Scholar]
- Hitchcock S. E., Zimmerman C. J., Smalley C. Study of the structure of troponin-T by measuring the relative reactivities of lysines with acetic anhydride. J Mol Biol. 1981 Mar 25;147(1):125–151. doi: 10.1016/0022-2836(81)90082-6. [DOI] [PubMed] [Google Scholar]
- Ho C. Y., Lever H. M., DeSanctis R., Farver C. F., Seidman J. G., Seidman C. E. Homozygous mutation in cardiac troponin T: implications for hypertrophic cardiomyopathy. Circulation. 2000 Oct 17;102(16):1950–1955. doi: 10.1161/01.cir.102.16.1950. [DOI] [PubMed] [Google Scholar]
- Homsher E., Lee D. M., Morris C., Pavlov D., Tobacman L. S. Regulation of force and unloaded sliding speed in single thin filaments: effects of regulatory proteins and calcium. J Physiol. 2000 Apr 1;524(Pt 1):233–243. doi: 10.1111/j.1469-7793.2000.00233.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson P., Amphlett G. W., Perry S. V. The primary structure of troponin T and the interaction with tropomyosin. Biochem J. 1975 Oct;151(1):85–97. doi: 10.1042/bj1510085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knollmann B. C., Blatt S. A., Horton K., de Freitas F., Miller T., Bell M., Housmans P. R., Weissman N. J., Morad M., Potter J. D. Inotropic stimulation induces cardiac dysfunction in transgenic mice expressing a troponin T (I79N) mutation linked to familial hypertrophic cardiomyopathy. J Biol Chem. 2000 Dec 11;276(13):10039–10048. doi: 10.1074/jbc.M006745200. [DOI] [PubMed] [Google Scholar]
- Koga Y., Toshima H., Kimura A., Harada H., Koyanagi T., Nishi H., Nakata M., Imaizumi T. Clinical manifestations of hypertrophic cardiomyopathy with mutations in the cardiac beta-myosin heavy chain gene or cardiac troponin T gene. J Card Fail. 1996 Dec;2(4 Suppl):S97–103. doi: 10.1016/s1071-9164(96)80064-9. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lim D. S., Oberst L., McCluggage M., Youker K., Lacy J., DeMayo F., Entman M. L., Roberts R., Michael L. H., Marian A. J. Decreased left ventricular ejection fraction in transgenic mice expressing mutant cardiac troponin T-Q(92), responsible for human hypertrophic cardiomyopathy. J Mol Cell Cardiol. 2000 Mar;32(3):365–374. doi: 10.1006/jmcc.1999.1081. [DOI] [PubMed] [Google Scholar]
- Lin D., Bobkova A., Homsher E., Tobacman L. S. Altered cardiac troponin T in vitro function in the presence of a mutation implicated in familial hypertrophic cardiomyopathy. J Clin Invest. 1996 Jun 15;97(12):2842–2848. doi: 10.1172/JCI118740. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marian A. J., Zhao G., Seta Y., Roberts R., Yu Q. T. Expression of a mutant (Arg92Gln) human cardiac troponin T, known to cause hypertrophic cardiomyopathy, impairs adult cardiac myocyte contractility. Circ Res. 1997 Jul;81(1):76–85. doi: 10.1161/01.res.81.1.76. [DOI] [PubMed] [Google Scholar]
- McLachlan A. D., Stewart M. Tropomyosin coiled-coil interactions: evidence for an unstaggered structure. J Mol Biol. 1975 Oct 25;98(2):293–304. doi: 10.1016/s0022-2836(75)80119-7. [DOI] [PubMed] [Google Scholar]
- Miller T., Szczesna D., Housmans P. R., Zhao J., de Freitas F., Gomes A. V., Culbreath L., McCue J., Wang Y., Xu Y. Abnormal contractile function in transgenic mice expressing a familial hypertrophic cardiomyopathy-linked troponin T (I79N) mutation. J Biol Chem. 2000 Nov 1;276(6):3743–3755. doi: 10.1074/jbc.M006746200. [DOI] [PubMed] [Google Scholar]
- Moolman J. C., Corfield V. A., Posen B., Ngumbela K., Seidman C., Brink P. A., Watkins H. Sudden death due to troponin T mutations. J Am Coll Cardiol. 1997 Mar 1;29(3):549–555. doi: 10.1016/s0735-1097(96)00530-x. [DOI] [PubMed] [Google Scholar]
- Morimoto S., Yanaga F., Minakami R., Ohtsuki I. Ca2+-sensitizing effects of the mutations at Ile-79 and Arg-92 of troponin T in hypertrophic cardiomyopathy. Am J Physiol. 1998 Jul;275(1 Pt 1):C200–C207. doi: 10.1152/ajpcell.1998.275.1.C200. [DOI] [PubMed] [Google Scholar]
- Mukherjea P., Tong L., Seidman J. G., Seidman C. E., Hitchcock-DeGregori S. E. Altered regulatory function of two familial hypertrophic cardiomyopathy troponin T mutants. Biochemistry. 1999 Oct 5;38(40):13296–13301. doi: 10.1021/bi9906120. [DOI] [PubMed] [Google Scholar]
- Nagano K., Miyamoto S., Matsumura M., Ohtsuki T. Possible formation of a triple-stranded coiled-coil region in tropomyosin-troponin T binding complex. J Mol Biol. 1980 Aug 5;141(2):217–222. doi: 10.1016/0022-2836(80)90386-1. [DOI] [PubMed] [Google Scholar]
- Nakajima-Taniguchi C., Matsui H., Fujio Y., Nagata S., Kishimoto T., Yamauchi-Takihara K. Novel missense mutation in cardiac troponin T gene found in Japanese patient with hypertrophic cardiomyopathy. J Mol Cell Cardiol. 1997 Feb;29(2):839–843. doi: 10.1006/jmcc.1996.0322. [DOI] [PubMed] [Google Scholar]
- Oberst L., Zhao G., Park J. T., Brugada R., Michael L. H., Entman M. L., Roberts R., Marian A. J. Dominant-negative effect of a mutant cardiac troponin T on cardiac structure and function in transgenic mice. J Clin Invest. 1998 Oct 15;102(8):1498–1505. doi: 10.1172/JCI4088. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohtsuki I., Nagano K. Molecular arrangement of troponin-tropomyosin in the thin filament. Adv Biophys. 1982;15:93–130. doi: 10.1016/0065-227x(82)90006-5. [DOI] [PubMed] [Google Scholar]
- Pan B. S., Gordon A. M., Potter J. D. Deletion of the first 45 NH2-terminal residues of rabbit skeletal troponin T strengthens binding of troponin to immobilized tropomyosin. J Biol Chem. 1991 Jul 5;266(19):12432–12438. [PubMed] [Google Scholar]
- Pande S. V., Murthy M. S. A modified micro-Bradford procedure for elimination of interference from sodium dodecyl sulfate, other detergents, and lipids. Anal Biochem. 1994 Aug 1;220(2):424–426. doi: 10.1006/abio.1994.1361. [DOI] [PubMed] [Google Scholar]
- Pato M. D., Mak A. S., Smillie L. B. Fragments of rabbit striated muscle alpha-tropomyosin. II. Binding to troponin-T. J Biol Chem. 1981 Jan 25;256(2):602–607. [PubMed] [Google Scholar]
- Pearlstone J. R., Smillie L. B. Binding of troponin-T fragments to several types of tropomyosin. Sensitivity to Ca2+ in the presence of troponin-C. J Biol Chem. 1982 Sep 25;257(18):10587–10592. [PubMed] [Google Scholar]
- Pearlstone J. R., Smillie L. B. Effects of troponin-I plus-C on the binding of troponin-T and its fragments to alpha-tropomyosin. Ca2+ sensitivity and cooperativity. J Biol Chem. 1983 Feb 25;258(4):2534–2542. [PubMed] [Google Scholar]
- Pearlstone J. R., Smillie L. B. The binding site of skeletal alpha-tropomyosin on troponin-T. Can J Biochem. 1977 Oct;55(10):1032–1038. doi: 10.1139/o77-154. [DOI] [PubMed] [Google Scholar]
- Perry S. V. Troponin T: genetics, properties and function. J Muscle Res Cell Motil. 1998 Aug;19(6):575–602. doi: 10.1023/a:1005397501968. [DOI] [PubMed] [Google Scholar]
- Phillips G. N., Jr, Lattman E. E., Cummins P., Lee K. Y., Cohen C. Crystal structure and molecular interactions of tropomyosin. Nature. 1979 Mar 29;278(5703):413–417. doi: 10.1038/278413a0. [DOI] [PubMed] [Google Scholar]
- Redwood C., Lohmann K., Bing W., Esposito G. M., Elliott K., Abdulrazzak H., Knott A., Purcell I., Marston S., Watkins H. Investigation of a truncated cardiac troponin T that causes familial hypertrophic cardiomyopathy: Ca(2+) regulatory properties of reconstituted thin filaments depend on the ratio of mutant to wild-type protein. Circ Res. 2000 Jun 9;86(11):1146–1152. doi: 10.1161/01.res.86.11.1146. [DOI] [PubMed] [Google Scholar]
- Ruiz-Opazo N., Nadal-Ginard B. Alpha-tropomyosin gene organization. Alternative splicing of duplicated isotype-specific exons accounts for the production of smooth and striated muscle isoforms. J Biol Chem. 1987 Apr 5;262(10):4755–4765. [PubMed] [Google Scholar]
- Ruiz-Opazo N., Weinberger J., Nadal-Ginard B. Comparison of alpha-tropomyosin sequences from smooth and striated muscle. Nature. 1985 May 2;315(6014):67–70. doi: 10.1038/315067a0. [DOI] [PubMed] [Google Scholar]
- Rust E. M., Albayya F. P., Metzger J. M. Identification of a contractile deficit in adult cardiac myocytes expressing hypertrophic cardiomyopathy-associated mutant troponin T proteins. J Clin Invest. 1999 May 15;103(10):1459–1467. doi: 10.1172/JCI6377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schenk P. M., Baumann S., Mattes R., Steinbiss H. H. Improved high-level expression system for eukaryotic genes in Escherichia coli using T7 RNA polymerase and rare ArgtRNAs. Biotechniques. 1995 Aug;19(2):196-8, 200. [PubMed] [Google Scholar]
- Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
- Sweeney H. L., Feng H. S., Yang Z., Watkins H. Functional analyses of troponin T mutations that cause hypertrophic cardiomyopathy: insights into disease pathogenesis and troponin function. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14406–14410. doi: 10.1073/pnas.95.24.14406. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szczesna D., Zhang R., Zhao J., Jones M., Guzman G., Potter J. D. Altered regulation of cardiac muscle contraction by troponin T mutations that cause familial hypertrophic cardiomyopathy. J Biol Chem. 2000 Jan 7;275(1):624–630. doi: 10.1074/jbc.275.1.624. [DOI] [PubMed] [Google Scholar]
- Tardiff J. C., Hewett T. E., Palmer B. M., Olsson C., Factor S. M., Moore R. L., Robbins J., Leinwand L. A. Cardiac troponin T mutations result in allele-specific phenotypes in a mouse model for hypertrophic cardiomyopathy. J Clin Invest. 1999 Aug;104(4):469–481. doi: 10.1172/JCI6067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thierfelder L., Watkins H., MacRae C., Lamas R., McKenna W., Vosberg H. P., Seidman J. G., Seidman C. E. Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell. 1994 Jun 3;77(5):701–712. doi: 10.1016/0092-8674(94)90054-x. [DOI] [PubMed] [Google Scholar]
- Tobacman L. S., Lin D., Butters C., Landis C., Back N., Pavlov D., Homsher E. Functional consequences of troponin T mutations found in hypertrophic cardiomyopathy. J Biol Chem. 1999 Oct 1;274(40):28363–28370. doi: 10.1074/jbc.274.40.28363. [DOI] [PubMed] [Google Scholar]
- Varnava A., Baboonian C., Davison F., de Cruz L., Elliott P. M., Davies M. J., McKenna W. J. A new mutation of the cardiac troponin T gene causing familial hypertrophic cardiomyopathy without left ventricular hypertrophy. Heart. 1999 Nov;82(5):621–624. doi: 10.1136/hrt.82.5.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watkins H., McKenna W. J., Thierfelder L., Suk H. J., Anan R., O'Donoghue A., Spirito P., Matsumori A., Moravec C. S., Seidman J. G. Mutations in the genes for cardiac troponin T and alpha-tropomyosin in hypertrophic cardiomyopathy. N Engl J Med. 1995 Apr 20;332(16):1058–1064. doi: 10.1056/NEJM199504203321603. [DOI] [PubMed] [Google Scholar]
- Whitby F. G., Phillips G. N., Jr Crystal structure of tropomyosin at 7 Angstroms resolution. Proteins. 2000 Jan 1;38(1):49–59. [PubMed] [Google Scholar]
- White S. P., Cohen C., Phillips G. N., Jr Structure of co-crystals of tropomyosin and troponin. 1987 Feb 26-Mar 4Nature. 325(6107):826–828. doi: 10.1038/325826a0. [DOI] [PubMed] [Google Scholar]
- Yanaga F., Morimoto S., Ohtsuki I. Ca2+ sensitization and potentiation of the maximum level of myofibrillar ATPase activity caused by mutations of troponin T found in familial hypertrophic cardiomyopathy. J Biol Chem. 1999 Mar 26;274(13):8806–8812. doi: 10.1074/jbc.274.13.8806. [DOI] [PubMed] [Google Scholar]
