Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Nov;81(5):2838–2850. doi: 10.1016/s0006-3495(01)75925-5

Motility of single one-headed kinesin molecules along microtubules.

Y Inoue 1, A H Iwane 1, T Miyai 1, E Muto 1, T Yanagida 1
PMCID: PMC1301749  PMID: 11606295

Abstract

The motility of single one-headed kinesin molecules (K351 and K340), which were truncated fragments of Drosophila two-headed kinesin, has been tested using total internal reflection fluorescence microscopy. One-headed kinesin fragments moved continuously along the microtubules. The maximum distance traveled until the fragments dissociated from the microtubules for both K351 and K340 was approximately 600 nm. This value is considerably larger than the space resolution of the measurement system (SD approximately 30 nm). Although the movements of the fragments fluctuated in forward and backward directions, statistical analysis showed that the average movements for both K340 and K351 were toward the plus end of the microtubules, i.e., forward direction. When BDTC (a 1.3-S subunit of Propionibacterium shermanii transcarboxylase, which binds weakly to a microtubule), was fused to the tail (C-terminus) of K351, its movement was enhanced, smooth, and unidirectional, similar to that of the two-headed kinesin fragment, K411. However, the travel distance and velocity of K351BDTC molecules were approximately 3-fold smaller than that of K411. These observations suggest that a single kinesin head has basal motility, but coordination between the two heads is necessary for stabilizing the basal motility for the normal level of kinesin processivity.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berliner E., Young E. C., Anderson K., Mahtani H. K., Gelles J. Failure of a single-headed kinesin to track parallel to microtubule protofilaments. Nature. 1995 Feb 23;373(6516):718–721. doi: 10.1038/373718a0. [DOI] [PubMed] [Google Scholar]
  2. Block S. M., Goldstein L. S., Schnapp B. J. Bead movement by single kinesin molecules studied with optical tweezers. Nature. 1990 Nov 22;348(6299):348–352. doi: 10.1038/348348a0. [DOI] [PubMed] [Google Scholar]
  3. Case R. B., Pierce D. W., Hom-Booher N., Hart C. L., Vale R. D. The directional preference of kinesin motors is specified by an element outside of the motor catalytic domain. Cell. 1997 Sep 5;90(5):959–966. doi: 10.1016/s0092-8674(00)80360-8. [DOI] [PubMed] [Google Scholar]
  4. Correia J. J., Gilbert S. P., Moyer M. L., Johnson K. A. Sedimentation studies on the kinesin motor domain constructs K401, K366, and K341. Biochemistry. 1995 Apr 11;34(14):4898–4907. doi: 10.1021/bi00014a047. [DOI] [PubMed] [Google Scholar]
  5. Cross R. A. On the hand-over-hand footsteps of kinesin heads. J Muscle Res Cell Motil. 1995 Apr;16(2):91–94. doi: 10.1007/BF00122526. [DOI] [PubMed] [Google Scholar]
  6. Endow S. A., Waligora K. W. Determinants of kinesin motor polarity. Science. 1998 Aug 21;281(5380):1200–1202. doi: 10.1126/science.281.5380.1200. [DOI] [PubMed] [Google Scholar]
  7. Funatsu T., Harada Y., Tokunaga M., Saito K., Yanagida T. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature. 1995 Apr 6;374(6522):555–559. doi: 10.1038/374555a0. [DOI] [PubMed] [Google Scholar]
  8. Hackney D. D. Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6865–6869. doi: 10.1073/pnas.91.15.6865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hackney D. D. Highly processive microtubule-stimulated ATP hydrolysis by dimeric kinesin head domains. Nature. 1995 Oct 5;377(6548):448–450. doi: 10.1038/377448a0. [DOI] [PubMed] [Google Scholar]
  10. Hancock W. O., Howard J. Kinesin's processivity results from mechanical and chemical coordination between the ATP hydrolysis cycles of the two motor domains. Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):13147–13152. doi: 10.1073/pnas.96.23.13147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hancock W. O., Howard J. Processivity of the motor protein kinesin requires two heads. J Cell Biol. 1998 Mar 23;140(6):1395–1405. doi: 10.1083/jcb.140.6.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Harada Y., Sakurada K., Aoki T., Thomas D. D., Yanagida T. Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay. J Mol Biol. 1990 Nov 5;216(1):49–68. doi: 10.1016/S0022-2836(05)80060-9. [DOI] [PubMed] [Google Scholar]
  13. Henningsen U., Schliwa M. Reversal in the direction of movement of a molecular motor. Nature. 1997 Sep 4;389(6646):93–96. doi: 10.1038/38022. [DOI] [PubMed] [Google Scholar]
  14. Higuchi H., Muto E., Inoue Y., Yanagida T. Kinetics of force generation by single kinesin molecules activated by laser photolysis of caged ATP. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4395–4400. doi: 10.1073/pnas.94.9.4395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Howard J., Hudspeth A. J., Vale R. D. Movement of microtubules by single kinesin molecules. Nature. 1989 Nov 9;342(6246):154–158. doi: 10.1038/342154a0. [DOI] [PubMed] [Google Scholar]
  16. Hua W., Young E. C., Fleming M. L., Gelles J. Coupling of kinesin steps to ATP hydrolysis. Nature. 1997 Jul 24;388(6640):390–393. doi: 10.1038/41118. [DOI] [PubMed] [Google Scholar]
  17. Huang T. G., Hackney D. D. Drosophila kinesin minimal motor domain expressed in Escherichia coli. Purification and kinetic characterization. J Biol Chem. 1994 Jun 10;269(23):16493–16501. [PubMed] [Google Scholar]
  18. Huang T. G., Hackney D. D. Drosophila kinesin minimal motor domain expressed in Escherichia coli. Purification and kinetic characterization. J Biol Chem. 1994 Jun 10;269(23):16493–16501. [PubMed] [Google Scholar]
  19. Hyman A., Drechsel D., Kellogg D., Salser S., Sawin K., Steffen P., Wordeman L., Mitchison T. Preparation of modified tubulins. Methods Enzymol. 1991;196:478–485. doi: 10.1016/0076-6879(91)96041-o. [DOI] [PubMed] [Google Scholar]
  20. Inoue Y., Toyoshima Y. Y., Iwane A. H., Morimoto S., Higuchi H., Yanagida T. Movements of truncated kinesin fragments with a short or an artificial flexible neck. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7275–7280. doi: 10.1073/pnas.94.14.7275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Iwane A. H., Kitamura K., Tokunaga M., Yanagida T. Myosin subfragment-1 is fully equipped with factors essential for motor function. Biochem Biophys Res Commun. 1997 Jan 3;230(1):76–80. doi: 10.1006/bbrc.1996.5861. [DOI] [PubMed] [Google Scholar]
  22. Iwatani S., Iwane A. H., Higuchi H., Ishii Y., Yanagida T. Mechanical and chemical properties of cysteine-modified kinesin molecules. Biochemistry. 1999 Aug 10;38(32):10318–10323. doi: 10.1021/bi9904095. [DOI] [PubMed] [Google Scholar]
  23. Jiang W., Stock M. F., Li X., Hackney D. D. Influence of the kinesin neck domain on dimerization and ATPase kinetics. J Biol Chem. 1997 Mar 21;272(12):7626–7632. doi: 10.1074/jbc.272.12.7626. [DOI] [PubMed] [Google Scholar]
  24. Kikkawa M., Okada Y., Hirokawa N. 15 A resolution model of the monomeric kinesin motor, KIF1A. Cell. 2000 Jan 21;100(2):241–252. doi: 10.1016/s0092-8674(00)81562-7. [DOI] [PubMed] [Google Scholar]
  25. Kozielski F., Sack S., Marx A., Thormählen M., Schönbrunn E., Biou V., Thompson A., Mandelkow E. M., Mandelkow E. The crystal structure of dimeric kinesin and implications for microtubule-dependent motility. Cell. 1997 Dec 26;91(7):985–994. doi: 10.1016/s0092-8674(00)80489-4. [DOI] [PubMed] [Google Scholar]
  26. Kull F. J., Sablin E. P., Lau R., Fletterick R. J., Vale R. D. Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature. 1996 Apr 11;380(6574):550–555. doi: 10.1038/380550a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ma Y. Z., Taylor E. W. Kinetic mechanism of a monomeric kinesin construct. J Biol Chem. 1997 Jan 10;272(2):717–723. doi: 10.1074/jbc.272.2.717. [DOI] [PubMed] [Google Scholar]
  28. Miyamoto Y., Muto E., Mashimo T., Iwane A. H., Yoshiya I., Yanagida T. Direct inhibition of microtubule-based kinesin motility by local anesthetics. Biophys J. 2000 Feb;78(2):940–949. doi: 10.1016/S0006-3495(00)76651-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Moyer M. L., Gilbert S. P., Johnson K. A. Purification and characterization of two monomeric kinesin constructs. Biochemistry. 1996 May 21;35(20):6321–6329. doi: 10.1021/bi960017n. [DOI] [PubMed] [Google Scholar]
  30. Okada Y., Hirokawa N. A processive single-headed motor: kinesin superfamily protein KIF1A. Science. 1999 Feb 19;283(5405):1152–1157. doi: 10.1126/science.283.5405.1152. [DOI] [PubMed] [Google Scholar]
  31. Okada Y., Hirokawa N. Mechanism of the single-headed processivity: diffusional anchoring between the K-loop of kinesin and the C terminus of tubulin. Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):640–645. doi: 10.1073/pnas.97.2.640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pierce D. W., Hom-Booher N., Otsuka A. J., Vale R. D. Single-molecule behavior of monomeric and heteromeric kinesins. Biochemistry. 1999 Apr 27;38(17):5412–5421. doi: 10.1021/bi9830009. [DOI] [PubMed] [Google Scholar]
  33. Rice S., Lin A. W., Safer D., Hart C. L., Naber N., Carragher B. O., Cain S. M., Pechatnikova E., Wilson-Kubalek E. M., Whittaker M. A structural change in the kinesin motor protein that drives motility. Nature. 1999 Dec 16;402(6763):778–784. doi: 10.1038/45483. [DOI] [PubMed] [Google Scholar]
  34. Romberg L., Pierce D. W., Vale R. D. Role of the kinesin neck region in processive microtubule-based motility. J Cell Biol. 1998 Mar 23;140(6):1407–1416. doi: 10.1083/jcb.140.6.1407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sack S., Müller J., Marx A., Thormählen M., Mandelkow E. M., Brady S. T., Mandelkow E. X-ray structure of motor and neck domains from rat brain kinesin. Biochemistry. 1997 Dec 23;36(51):16155–16165. doi: 10.1021/bi9722498. [DOI] [PubMed] [Google Scholar]
  36. Schnitzer M. J., Block S. M. Kinesin hydrolyses one ATP per 8-nm step. Nature. 1997 Jul 24;388(6640):386–390. doi: 10.1038/41111. [DOI] [PubMed] [Google Scholar]
  37. Vale R. D., Funatsu T., Pierce D. W., Romberg L., Harada Y., Yanagida T. Direct observation of single kinesin molecules moving along microtubules. Nature. 1996 Apr 4;380(6573):451–453. doi: 10.1038/380451a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Vugmeyster Y., Berliner E., Gelles J. Release of isolated single kinesin molecules from microtubules. Biochemistry. 1998 Jan 13;37(2):747–757. doi: 10.1021/bi971534o. [DOI] [PubMed] [Google Scholar]
  39. Young E. C., Mahtani H. K., Gelles J. One-headed kinesin derivatives move by a nonprocessive, low-duty ratio mechanism unlike that of two-headed kinesin. Biochemistry. 1998 Mar 10;37(10):3467–3479. doi: 10.1021/bi972172n. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES