Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Nov;81(5):2851–2863. doi: 10.1016/S0006-3495(01)75926-7

Polarized fluorescence microscopy of individual and many kinesin motors bound to axonemal microtubules.

E J Peterman 1, H Sosa 1, L S Goldstein 1, W E Moerner 1
PMCID: PMC1301750  PMID: 11606296

Abstract

Kinesin is a molecular motor that interacts with microtubules and uses the energy of ATP hydrolysis to produce force and movement in cells. To investigate the conformational changes associated with this mechanochemical energy conversion, we developed a fluorescence polarization microscope that allows us to obtain information on the orientation of single as well as many fluorophores. We attached either monofunctional or bifunctional fluorescent probes to the kinesin motor domain. Both types of labeled kinesins show anisotropic fluorescence signals when bound to axonemal microtubules, but the bifunctional probe is less mobile resulting in higher anisotropy. From the polarization experiments with the bifunctional probe, we determined the orientation of kinesin bound to microtubules in the presence of AMP-PNP and found close agreement with previous models derived from cryo-electron microscopy. We also compared the polarization anisotropy of monomeric and dimeric kinesin constructs bound to microtubules in the presence of AMP-PNP. Our results support models of mechanochemistry that require a state in which both motor domains of a kinesin dimer bind simultaneously with similar orientation with respect to the microtubule.

Full Text

The Full Text of this article is available as a PDF (684.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi K., Yasuda R., Noji H., Itoh H., Harada Y., Yoshida M., Kinosita K., Jr Stepping rotation of F1-ATPase visualized through angle-resolved single-fluorophore imaging. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7243–7247. doi: 10.1073/pnas.120174297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arnal I., Metoz F., DeBonis S., Wade R. H. Three-dimensional structure of functional motor proteins on microtubules. Curr Biol. 1996 Oct 1;6(10):1265–1270. doi: 10.1016/s0960-9822(02)70712-4. [DOI] [PubMed] [Google Scholar]
  3. Corrie J. E., Brandmeier B. D., Ferguson R. E., Trentham D. R., Kendrick-Jones J., Hopkins S. C., van der Heide U. A., Goldman Y. E., Sabido-David C., Dale R. E. Dynamic measurement of myosin light-chain-domain tilt and twist in muscle contraction. Nature. 1999 Jul 29;400(6743):425–430. doi: 10.1038/22704. [DOI] [PubMed] [Google Scholar]
  4. Crevel I. M., Lockhart A., Cross R. A. Weak and strong states of kinesin and ncd. J Mol Biol. 1996 Mar 22;257(1):66–76. doi: 10.1006/jmbi.1996.0147. [DOI] [PubMed] [Google Scholar]
  5. Funatsu T., Harada Y., Tokunaga M., Saito K., Yanagida T. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature. 1995 Apr 6;374(6522):555–559. doi: 10.1038/374555a0. [DOI] [PubMed] [Google Scholar]
  6. Gibbons I. R., Fronk E. A latent adenosine triphosphatase form of dynein 1 from sea urchin sperm flagella. J Biol Chem. 1979 Jan 10;254(1):187–196. [PubMed] [Google Scholar]
  7. Goldstein L. S., Philp A. V. The road less traveled: emerging principles of kinesin motor utilization. Annu Rev Cell Dev Biol. 1999;15:141–183. doi: 10.1146/annurev.cellbio.15.1.141. [DOI] [PubMed] [Google Scholar]
  8. Hirose K., Lockhart A., Cross R. A., Amos L. A. Three-dimensional cryoelectron microscopy of dimeric kinesin and ncd motor domains on microtubules. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9539–9544. doi: 10.1073/pnas.93.18.9539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hirose K., Löwe J., Alonso M., Cross R. A., Amos L. A. Congruent docking of dimeric kinesin and ncd into three-dimensional electron cryomicroscopy maps of microtubule-motor ADP complexes. Mol Biol Cell. 1999 Jun;10(6):2063–2074. doi: 10.1091/mbc.10.6.2063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hoenger A., Sack S., Thormählen M., Marx A., Müller J., Gross H., Mandelkow E. Image reconstructions of microtubules decorated with monomeric and dimeric kinesins: comparison with x-ray structure and implications for motility. J Cell Biol. 1998 Apr 20;141(2):419–430. doi: 10.1083/jcb.141.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hoenger A., Thormählen M., Diaz-Avalos R., Doerhoefer M., Goldie K. N., Müller J., Mandelkow E. A new look at the microtubule binding patterns of dimeric kinesins. J Mol Biol. 2000 Apr 14;297(5):1087–1103. doi: 10.1006/jmbi.2000.3627. [DOI] [PubMed] [Google Scholar]
  12. Kawaguchi K., Ishiwata S. Nucleotide-dependent single- to double-headed binding of kinesin. Science. 2001 Jan 26;291(5504):667–669. doi: 10.1126/science.291.5504.667. [DOI] [PubMed] [Google Scholar]
  13. Kikkawa M., Okada Y., Hirokawa N. 15 A resolution model of the monomeric kinesin motor, KIF1A. Cell. 2000 Jan 21;100(2):241–252. doi: 10.1016/s0092-8674(00)81562-7. [DOI] [PubMed] [Google Scholar]
  14. Kikkawa M., Sablin E. P., Okada Y., Yajima H., Fletterick R. J., Hirokawa N. Switch-based mechanism of kinesin motors. Nature. 2001 May 24;411(6836):439–445. doi: 10.1038/35078000. [DOI] [PubMed] [Google Scholar]
  15. Kozielski F., Arnal I., Wade R. H. A model of the microtubule-kinesin complex based on electron cryomicroscopy and X-ray crystallography. Curr Biol. 1998 Feb 12;8(4):191–198. doi: 10.1016/s0960-9822(98)70083-1. [DOI] [PubMed] [Google Scholar]
  16. Kull F. J., Sablin E. P., Lau R., Fletterick R. J., Vale R. D. Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature. 1996 Apr 11;380(6574):550–555. doi: 10.1038/380550a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lipari G., Szabo A. Effect of librational motion on fluorescence depolarization and nuclear magnetic resonance relaxation in macromolecules and membranes. Biophys J. 1980 Jun;30(3):489–506. doi: 10.1016/S0006-3495(80)85109-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lu H. P., Xun L., Xie X. S. Single-molecule enzymatic dynamics. Science. 1998 Dec 4;282(5395):1877–1882. doi: 10.1126/science.282.5395.1877. [DOI] [PubMed] [Google Scholar]
  19. Moerner W. E., Orrit M. Illuminating single molecules in condensed matter. Science. 1999 Mar 12;283(5408):1670–1676. doi: 10.1126/science.283.5408.1670. [DOI] [PubMed] [Google Scholar]
  20. Rice S., Lin A. W., Safer D., Hart C. L., Naber N., Carragher B. O., Cain S. M., Pechatnikova E., Wilson-Kubalek E. M., Whittaker M. A structural change in the kinesin motor protein that drives motility. Nature. 1999 Dec 16;402(6763):778–784. doi: 10.1038/45483. [DOI] [PubMed] [Google Scholar]
  21. Sase I., Miyata H., Ishiwata S., Kinosita K., Jr Axial rotation of sliding actin filaments revealed by single-fluorophore imaging. Proc Natl Acad Sci U S A. 1997 May 27;94(11):5646–5650. doi: 10.1073/pnas.94.11.5646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sosa H., Dias D. P., Hoenger A., Whittaker M., Wilson-Kubalek E., Sablin E., Fletterick R. J., Vale R. D., Milligan R. A. A model for the microtubule-Ncd motor protein complex obtained by cryo-electron microscopy and image analysis. Cell. 1997 Jul 25;90(2):217–224. doi: 10.1016/s0092-8674(00)80330-x. [DOI] [PubMed] [Google Scholar]
  23. Sosa H., Peterman E. J., Moerner W. E., Goldstein L. S. ADP-induced rocking of the kinesin motor domain revealed by single-molecule fluorescence polarization microscopy. Nat Struct Biol. 2001 Jun;8(6):540–544. doi: 10.1038/88611. [DOI] [PubMed] [Google Scholar]
  24. Vale R. D., Milligan R. A. The way things move: looking under the hood of molecular motor proteins. Science. 2000 Apr 7;288(5463):88–95. doi: 10.1126/science.288.5463.88. [DOI] [PubMed] [Google Scholar]
  25. Warshaw D. M., Hayes E., Gaffney D., Lauzon A. M., Wu J., Kennedy G., Trybus K., Lowey S., Berger C. Myosin conformational states determined by single fluorophore polarization. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8034–8039. doi: 10.1073/pnas.95.14.8034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Weiss S. Fluorescence spectroscopy of single biomolecules. Science. 1999 Mar 12;283(5408):1676–1683. doi: 10.1126/science.283.5408.1676. [DOI] [PubMed] [Google Scholar]
  27. van Amerongen H., Struve W. S. Polarized optical spectroscopy of chromoproteins. Methods Enzymol. 1995;246:259–283. doi: 10.1016/0076-6879(95)46013-6. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES