Abstract
Spin-label electron paramagnetic resonance (EPR) provides optimal resolution of dynamic and conformational heterogeneity on the nanosecond time-scale and was used to assess the structure of the sequence between Met(76) and Ser(81) in vertebrate calmodulin (CaM). Previous fluorescence resonance energy transfer and anisotropy measurements indicate that the opposing domains of CaM are structurally coupled and the interconnecting central sequence adopts conformationally distinct structures in the apo-form and following calcium activation. In contrast, NMR data suggest that the opposing domains of CaM undergo independent rotational dynamics and that the sequence between Met(76) and Ser(81) in the central sequence functions as a flexible linker that connects two structurally independent domains. However, these latter measurements also resolve weak internuclear interactions that suggest the formation of transient helical structures that are stable on the nanosecond time-scale within the sequence between Met(76) and Asp(80) in apo-CaM (H. Kuboniwa, N. Tjandra, S. Grzekiek, H. Ren, C. B. Klee, and A. Bax, 1995, Nat. Struct. Biol. 2:768-776). This reported conformational heterogeneity was resolved using site-directed mutagenesis and spin-label EPR, which detects two component spectra for 1-oxyl-2,2,5,5-tetramethylpyrroline-3-methyl)-methanethiosulfonate spin labels (MTSSL) bound to CaM mutants T79C and S81C that include a motionally restricted component. In comparison to MTSSL bound within stable helical regions, the fractional contribution of the immobilized component at these positions is enhanced upon the addition of small amounts of the helicogenic solvent trifluoroethanol (TFE). These results suggest that the immobilized component reflects the formation of stable secondary structures. Similar spectral changes are observed upon calcium activation, suggesting a calcium-dependent stabilization of the secondary structure. No corresponding changes are observed in either the solvent accessibility to molecular oxygen or the maximal hyperfine splitting. In contrast, more complex spectral changes in the line-shape and maximal hyperfine splitting are observed for spin labels bound to sites that undergo tertiary contact interactions. These results suggest that spin labels at solvent-exposed positions within the central sequence are primarily sensitive to backbone fluctuations and that either TFE or calcium binding stabilizes the secondary structure of the sequence between Met(76) and Ser(81) and modulates the structural coupling between the opposing domains of CaM.
Full Text
The Full Text of this article is available as a PDF (181.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altenbach C., Flitsch S. L., Khorana H. G., Hubbell W. L. Structural studies on transmembrane proteins. 2. Spin labeling of bacteriorhodopsin mutants at unique cysteines. Biochemistry. 1989 Sep 19;28(19):7806–7812. doi: 10.1021/bi00445a042. [DOI] [PubMed] [Google Scholar]
- Altenbach C., Froncisz W., Hyde J. S., Hubbell W. L. Conformation of spin-labeled melittin at membrane surfaces investigated by pulse saturation recovery and continuous wave power saturation electron paramagnetic resonance. Biophys J. 1989 Dec;56(6):1183–1191. doi: 10.1016/S0006-3495(89)82765-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Altenbach C., Yang K., Farrens D. L., Farahbakhsh Z. T., Khorana H. G., Hubbell W. L. Structural features and light-dependent changes in the cytoplasmic interhelical E-F loop region of rhodopsin: a site-directed spin-labeling study. Biochemistry. 1996 Sep 24;35(38):12470–12478. doi: 10.1021/bi960849l. [DOI] [PubMed] [Google Scholar]
- Babu Y. S., Bugg C. E., Cook W. J. Structure of calmodulin refined at 2.2 A resolution. J Mol Biol. 1988 Nov 5;204(1):191–204. doi: 10.1016/0022-2836(88)90608-0. [DOI] [PubMed] [Google Scholar]
- Babu Y. S., Sack J. S., Greenhough T. J., Bugg C. E., Means A. R., Cook W. J. Three-dimensional structure of calmodulin. Nature. 1985 May 2;315(6014):37–40. doi: 10.1038/315037a0. [DOI] [PubMed] [Google Scholar]
- Barbato G., Ikura M., Kay L. E., Pastor R. W., Bax A. Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible. Biochemistry. 1992 Jun 16;31(23):5269–5278. doi: 10.1021/bi00138a005. [DOI] [PubMed] [Google Scholar]
- Bayley P. M., Martin S. R. The alpha-helical content of calmodulin is increased by solution conditions favouring protein crystallisation. Biochim Biophys Acta. 1992 Nov 10;1160(1):16–21. doi: 10.1016/0167-4838(92)90034-b. [DOI] [PubMed] [Google Scholar]
- Berliner L. J., Grunwald J., Hankovszky H. O., Hideg K. A novel reversible thiol-specific spin label: papain active site labeling and inhibition. Anal Biochem. 1982 Jan 15;119(2):450–455. doi: 10.1016/0003-2697(82)90612-1. [DOI] [PubMed] [Google Scholar]
- Chattopadhyaya R., Meador W. E., Means A. R., Quiocho F. A. Calmodulin structure refined at 1.7 A resolution. J Mol Biol. 1992 Dec 20;228(4):1177–1192. doi: 10.1016/0022-2836(92)90324-d. [DOI] [PubMed] [Google Scholar]
- Columbus L., Kálai T., Jekö J., Hideg K., Hubbell W. L. Molecular motion of spin labeled side chains in alpha-helices: analysis by variation of side chain structure. Biochemistry. 2001 Apr 3;40(13):3828–3846. doi: 10.1021/bi002645h. [DOI] [PubMed] [Google Scholar]
- Craig T. A., Watterson D. M., Prendergast F. G., Haiech J., Roberts D. M. Site-specific mutagenesis of the alpha-helices of calmodulin. Effects of altering a charge cluster in the helix that links the two halves of calmodulin. J Biol Chem. 1987 Mar 5;262(7):3278–3284. [PubMed] [Google Scholar]
- Crivici A., Ikura M. Molecular and structural basis of target recognition by calmodulin. Annu Rev Biophys Biomol Struct. 1995;24:85–116. doi: 10.1146/annurev.bb.24.060195.000505. [DOI] [PubMed] [Google Scholar]
- Finn B. E., Evenäs J., Drakenberg T., Waltho J. P., Thulin E., Forsén S. Calcium-induced structural changes and domain autonomy in calmodulin. Nat Struct Biol. 1995 Sep;2(9):777–783. doi: 10.1038/nsb0995-777. [DOI] [PubMed] [Google Scholar]
- Fischer R., Koller M., Flura M., Mathews S., Strehler-Page M. A., Krebs J., Penniston J. T., Carafoli E., Strehler E. E. Multiple divergent mRNAs code for a single human calmodulin. J Biol Chem. 1988 Nov 15;263(32):17055–17062. [PubMed] [Google Scholar]
- Friedberg F. Species comparison of calmodulin sequences. Protein Seq Data Anal. 1990 Sep;3(4):335–337. [PubMed] [Google Scholar]
- Gao J., Yin D. H., Yao Y., Sun H., Qin Z., Schöneich C., Williams T. D., Squier T. C. Loss of conformational stability in calmodulin upon methionine oxidation. Biophys J. 1998 Mar;74(3):1115–1134. doi: 10.1016/S0006-3495(98)77830-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heidorn D. B., Trewhella J. Comparison of the crystal and solution structures of calmodulin and troponin C. Biochemistry. 1988 Feb 9;27(3):909–915. doi: 10.1021/bi00403a011. [DOI] [PubMed] [Google Scholar]
- Hühmer A. F., Gerber N. C., de Montellano P. R., Schöneich C. Peroxynitrite reduction of calmodulin stimulation of neuronal nitric oxide synthase. Chem Res Toxicol. 1996 Mar;9(2):484–491. doi: 10.1021/tx950152l. [DOI] [PubMed] [Google Scholar]
- Ikura M., Clore G. M., Gronenborn A. M., Zhu G., Klee C. B., Bax A. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science. 1992 May 1;256(5057):632–638. doi: 10.1126/science.1585175. [DOI] [PubMed] [Google Scholar]
- Ikura M., Spera S., Barbato G., Kay L. E., Krinks M., Bax A. Secondary structure and side-chain 1H and 13C resonance assignments of calmodulin in solution by heteronuclear multidimensional NMR spectroscopy. Biochemistry. 1991 Sep 24;30(38):9216–9228. doi: 10.1021/bi00102a013. [DOI] [PubMed] [Google Scholar]
- Jaren O. R., Harmon S., Chen A. F., Shea M. A. Paramecium calmodulin mutants defective in ion channel regulation can bind calcium and undergo calcium-induced conformational switching. Biochemistry. 2000 Jun 13;39(23):6881–6890. doi: 10.1021/bi000037w. [DOI] [PubMed] [Google Scholar]
- Kataoka M., Head J. F., Persechini A., Kretsinger R. H., Engelman D. M. Small-angle X-ray scattering studies of calmodulin mutants with deletions in the linker region of the central helix indicate that the linker region retains a predominantly alpha-helical conformation. Biochemistry. 1991 Feb 5;30(5):1188–1192. doi: 10.1021/bi00219a004. [DOI] [PubMed] [Google Scholar]
- Kretsinger R. H. The linker of calmodulin--to helix or not to helix. Cell Calcium. 1992 Jun-Jul;13(6-7):363–376. doi: 10.1016/0143-4160(92)90050-3. [DOI] [PubMed] [Google Scholar]
- Kuboniwa H., Tjandra N., Grzesiek S., Ren H., Klee C. B., Bax A. Solution structure of calcium-free calmodulin. Nat Struct Biol. 1995 Sep;2(9):768–776. doi: 10.1038/nsb0995-768. [DOI] [PubMed] [Google Scholar]
- LaPorte D. C., Wierman B. M., Storm D. R. Calcium-induced exposure of a hydrophobic surface on calmodulin. Biochemistry. 1980 Aug 5;19(16):3814–3819. doi: 10.1021/bi00557a025. [DOI] [PubMed] [Google Scholar]
- Langen R., Oh K. J., Cascio D., Hubbell W. L. Crystal structures of spin labeled T4 lysozyme mutants: implications for the interpretation of EPR spectra in terms of structure. Biochemistry. 2000 Jul 25;39(29):8396–8405. doi: 10.1021/bi000604f. [DOI] [PubMed] [Google Scholar]
- Lanzetta P. A., Alvarez L. J., Reinach P. S., Candia O. A. An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem. 1979 Nov 15;100(1):95–97. doi: 10.1016/0003-2697(79)90115-5. [DOI] [PubMed] [Google Scholar]
- Lee S. Y., Klevit R. E. The whole is not the simple sum of its parts in calmodulin from S. cerevisiae. Biochemistry. 2000 Apr 18;39(15):4225–4230. doi: 10.1021/bi992697a. [DOI] [PubMed] [Google Scholar]
- Luo P., Baldwin R. L. Mechanism of helix induction by trifluoroethanol: a framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water. Biochemistry. 1997 Jul 8;36(27):8413–8421. doi: 10.1021/bi9707133. [DOI] [PubMed] [Google Scholar]
- Mchaourab H. S., Lietzow M. A., Hideg K., Hubbell W. L. Motion of spin-labeled side chains in T4 lysozyme. Correlation with protein structure and dynamics. Biochemistry. 1996 Jun 18;35(24):7692–7704. doi: 10.1021/bi960482k. [DOI] [PubMed] [Google Scholar]
- Meador W. E., Means A. R., Quiocho F. A. Modulation of calmodulin plasticity in molecular recognition on the basis of x-ray structures. Science. 1993 Dec 10;262(5140):1718–1721. doi: 10.1126/science.8259515. [DOI] [PubMed] [Google Scholar]
- Meador W. E., Means A. R., Quiocho F. A. Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. Science. 1992 Aug 28;257(5074):1251–1255. doi: 10.1126/science.1519061. [DOI] [PubMed] [Google Scholar]
- Mukherjea P., Maune J. F., Beckingham K. Interlobe communication in multiple calcium-binding site mutants of Drosophila calmodulin. Protein Sci. 1996 Mar;5(3):468–477. doi: 10.1002/pro.5560050308. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newton D. L., Oldewurtel M. D., Krinks M. H., Shiloach J., Klee C. B. Agonist and antagonist properties of calmodulin fragments. J Biol Chem. 1984 Apr 10;259(7):4419–4426. [PubMed] [Google Scholar]
- Niggli V., Penniston J. T., Carafoli E. Purification of the (Ca2+-Mg2+)-ATPase from human erythrocyte membranes using a calmodulin affinity column. J Biol Chem. 1979 Oct 25;254(20):9955–9958. [PubMed] [Google Scholar]
- Pedigo S., Shea M. A. Discontinuous equilibrium titrations of cooperative calcium binding to calmodulin monitored by 1-D 1H-nuclear magnetic resonance spectroscopy. Biochemistry. 1995 Aug 22;34(33):10676–10689. doi: 10.1021/bi00033a044. [DOI] [PubMed] [Google Scholar]
- Pedigo S., Shea M. A. Quantitative endoproteinase GluC footprinting of cooperative Ca2+ binding to calmodulin: proteolytic susceptibility of E31 and E87 indicates interdomain interactions. Biochemistry. 1995 Jan 31;34(4):1179–1196. doi: 10.1021/bi00004a011. [DOI] [PubMed] [Google Scholar]
- Persechini A., Jarrett H. W., Kosk-Kosicka D., Krinks M. H., Lee H. G. Activation of enzymes by calmodulins containing intramolecular cross-links. Biochim Biophys Acta. 1993 Jun 4;1163(3):309–314. doi: 10.1016/0167-4838(93)90167-p. [DOI] [PubMed] [Google Scholar]
- Persechini A., Kretsinger R. H. The central helix of calmodulin functions as a flexible tether. J Biol Chem. 1988 Sep 5;263(25):12175–12178. [PubMed] [Google Scholar]
- Persechini A., McMillan K., Leakey P. Activation of myosin light chain kinase and nitric oxide synthase activities by calmodulin fragments. J Biol Chem. 1994 Jun 10;269(23):16148–16154. [PubMed] [Google Scholar]
- Putkey J. A., Ts'ui K. F., Tanaka T., Lagacé L., Stein J. P., Lai E. C., Means A. R. Chicken calmodulin genes. A species comparison of cDNA sequences and isolation of a genomic clone. J Biol Chem. 1983 Oct 10;258(19):11864–11870. [PubMed] [Google Scholar]
- Sacks D. B., Lopez M. M., Li Z., Kosk-Kosicka D. Analysis of phosphorylation and mutation of tyrosine residues of calmodulin on its activation of the erythrocyte Ca(2+)-transporting ATPase. Eur J Biochem. 1996 Jul 1;239(1):98–104. doi: 10.1111/j.1432-1033.1996.0098u.x. [DOI] [PubMed] [Google Scholar]
- Shea M. A., Sorensen B. R., Pedigo S., Verhoeven A. S. Proteolytic footprinting titrations for estimating ligand-binding constants and detecting pathways of conformational switching of calmodulin. Methods Enzymol. 2000;323:254–301. doi: 10.1016/s0076-6879(00)23370-3. [DOI] [PubMed] [Google Scholar]
- Shea M. A., Verhoeven A. S., Pedigo S. Calcium-induced interactions of calmodulin domains revealed by quantitative thrombin footprinting of Arg37 and Arg106. Biochemistry. 1996 Mar 5;35(9):2943–2957. doi: 10.1021/bi951934g. [DOI] [PubMed] [Google Scholar]
- Small E. W., Anderson S. R. Fluorescence anisotropy decay demonstrates calcium-dependent shape changes in photo-cross-linked calmodulin. Biochemistry. 1988 Jan 12;27(1):419–428. doi: 10.1021/bi00401a063. [DOI] [PubMed] [Google Scholar]
- Sorensen B. R., Shea M. A. Calcium binding decreases the stokes radius of calmodulin and mutants R74A, R90A, and R90G. Biophys J. 1996 Dec;71(6):3407–3420. doi: 10.1016/S0006-3495(96)79535-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sorensen B. R., Shea M. A. Interactions between domains of apo calmodulin alter calcium binding and stability. Biochemistry. 1998 Mar 24;37(12):4244–4253. doi: 10.1021/bi9718200. [DOI] [PubMed] [Google Scholar]
- Strasburg G. M., Hogan M., Birmachu W., Thomas D. D., Louis C. F. Site-specific derivatives of wheat germ calmodulin. Interactions with troponin and sarcoplasmic reticulum. J Biol Chem. 1988 Jan 5;263(1):542–548. [PubMed] [Google Scholar]
- Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
- Sun H., Squier T. C. Ordered and cooperative binding of opposing globular domains of calmodulin to the plasma membrane Ca-ATPase. J Biol Chem. 2000 Jan 21;275(3):1731–1738. doi: 10.1074/jbc.275.3.1731. [DOI] [PubMed] [Google Scholar]
- Sun H., Yin D., Coffeen L. A., Shea M. A., Squier T. C. Mutation of Tyr138 disrupts the structural coupling between the opposing domains in vertebrate calmodulin. Biochemistry. 2001 Aug 14;40(32):9605–9617. doi: 10.1021/bi0104266. [DOI] [PubMed] [Google Scholar]
- Sun H., Yin D., Squier T. C. Calcium-dependent structural coupling between opposing globular domains of calmodulin involves the central helix. Biochemistry. 1999 Sep 21;38(38):12266–12279. doi: 10.1021/bi9818671. [DOI] [PubMed] [Google Scholar]
- Tjandra N., Kuboniwa H., Ren H., Bax A. Rotational dynamics of calcium-free calmodulin studied by 15N-NMR relaxation measurements. Eur J Biochem. 1995 Jun 15;230(3):1014–1024. doi: 10.1111/j.1432-1033.1995.tb20650.x. [DOI] [PubMed] [Google Scholar]
- Tsalkova T. N., Privalov P. L. Thermodynamic study of domain organization in troponin C and calmodulin. J Mol Biol. 1985 Feb 20;181(4):533–544. doi: 10.1016/0022-2836(85)90425-5. [DOI] [PubMed] [Google Scholar]
- Török K., Lane A. N., Martin S. R., Janot J. M., Bayley P. M. Effects of calcium binding on the internal dynamic properties of bovine brain calmodulin, studied by NMR and optical spectroscopy. Biochemistry. 1992 Apr 7;31(13):3452–3462. doi: 10.1021/bi00128a020. [DOI] [PubMed] [Google Scholar]
- Urbauer J. L., Short J. H., Dow L. K., Wand A. J. Structural analysis of a novel interaction by calmodulin: high-affinity binding of a peptide in the absence of calcium. Biochemistry. 1995 Jun 27;34(25):8099–8109. doi: 10.1021/bi00025a016. [DOI] [PubMed] [Google Scholar]
- Verheyden P., De Wolf E., Jaspers H., Van Binst G. Comparing conformations at low temperature and at high viscosity. Conformational study of somatostatin and two of its analogues in methanol and in ethylene glycol. Int J Pept Protein Res. 1994 Nov;44(5):401–409. [PubMed] [Google Scholar]
- Wriggers W., Mehler E., Pitici F., Weinstein H., Schulten K. Structure and dynamics of calmodulin in solution. Biophys J. 1998 Apr;74(4):1622–1639. doi: 10.1016/S0006-3495(98)77876-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yao Y., Gao J., Squier T. C. Dynamic structure of the calmodulin-binding domain of the plasma membrane Ca-ATPase in native erythrocyte ghost membranes. Biochemistry. 1996 Sep 17;35(37):12015–12028. doi: 10.1021/bi960834n. [DOI] [PubMed] [Google Scholar]
- Yao Y., Schöneich C., Squier T. C. Resolution of structural changes associated with calcium activation of calmodulin using frequency domain fluorescence spectroscopy. Biochemistry. 1994 Jun 28;33(25):7797–7810. doi: 10.1021/bi00191a007. [DOI] [PubMed] [Google Scholar]
- Yao Y., Squier T. C. Variable conformation and dynamics of calmodulin complexed with peptides derived from the autoinhibitory domains of target proteins. Biochemistry. 1996 May 28;35(21):6815–6827. doi: 10.1021/bi960229k. [DOI] [PubMed] [Google Scholar]
- Yin D., Kuczera K., Squier T. C. The sensitivity of carboxyl-terminal methionines in calmodulin isoforms to oxidation by H(2)O(2) modulates the ability to activate the plasma membrane Ca-ATPase. Chem Res Toxicol. 2000 Feb;13(2):103–110. doi: 10.1021/tx990142a. [DOI] [PubMed] [Google Scholar]
- Yin D., Sun H., Ferrington D. A., Squier T. C. Closer proximity between opposing domains of vertebrate calmodulin following deletion of Met(145)-Lys(148). Biochemistry. 2000 Aug 22;39(33):10255–10268. doi: 10.1021/bi000949y. [DOI] [PubMed] [Google Scholar]
- Zhang M., Tanaka T., Ikura M. Calcium-induced conformational transition revealed by the solution structure of apo calmodulin. Nat Struct Biol. 1995 Sep;2(9):758–767. doi: 10.1038/nsb0995-758. [DOI] [PubMed] [Google Scholar]