Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Nov;81(5):2919–2934. doi: 10.1016/S0006-3495(01)75932-2

The effect of water on the rate of conformational change in protein allostery.

R A Goldbeck 1, S J Paquette 1, D S Kliger 1
PMCID: PMC1301756  PMID: 11606302

Abstract

The influence of solvation on the rate of quaternary structural change is investigated in human hemoglobin, an allosteric protein in which reduced water activity destabilizes the R state relative to T. Nanosecond absorption spectroscopy of the heme Soret band was used to monitor protein relaxation after photodissociation of aqueous HbCO complex under osmotic stress induced by the nonbinding cosolute poly(ethylene glycol) (PEG). Photolysis data were analyzed globally for six exponential time constants and amplitudes as a function of osmotic stress and viscosity. Increases in time constants associated with geminate rebinding, tertiary relaxation, and quaternary relaxation were observed in the presence of PEG, along with a decrease in the fraction of hemes rebinding CO with the slow rate constant characteristic of the T state. An analysis of these results along with those obtained by others for small cosolutes showed that both osmotic stress and solvent viscosity are important determinants of the microscopic R --> T rate constant. The size and direction of the osmotic stress effect suggests that at least nine additional water molecules are required to solvate the allosteric transition state relative to the R-state hydration, implying that the transition state has a greater solvent-exposed area than either end state.

Full Text

The Full Text of this article is available as a PDF (204.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ansari A., Jones C. M., Henry E. R., Hofrichter J., Eaton W. A. The role of solvent viscosity in the dynamics of protein conformational changes. Science. 1992 Jun 26;256(5065):1796–1798. doi: 10.1126/science.1615323. [DOI] [PubMed] [Google Scholar]
  2. Arakawa T., Timasheff S. N. Mechanism of poly(ethylene glycol) interaction with proteins. Biochemistry. 1985 Nov 19;24(24):6756–6762. doi: 10.1021/bi00345a005. [DOI] [PubMed] [Google Scholar]
  3. Arakawa T., Timasheff S. N. Stabilization of protein structure by sugars. Biochemistry. 1982 Dec 7;21(25):6536–6544. doi: 10.1021/bi00268a033. [DOI] [PubMed] [Google Scholar]
  4. Baldwin J., Chothia C. Haemoglobin: the structural changes related to ligand binding and its allosteric mechanism. J Mol Biol. 1979 Apr 5;129(2):175–220. doi: 10.1016/0022-2836(79)90277-8. [DOI] [PubMed] [Google Scholar]
  5. Barshtein G, Almagor A, Yedgar S, Gavish B. Inhomogeneity of viscous aqueous solutions. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Jul;52(1):555–557. doi: 10.1103/physreve.52.555. [DOI] [PubMed] [Google Scholar]
  6. Beece D., Eisenstein L., Frauenfelder H., Good D., Marden M. C., Reinisch L., Reynolds A. H., Sorensen L. B., Yue K. T. Solvent viscosity and protein dynamics. Biochemistry. 1980 Nov 11;19(23):5147–5157. doi: 10.1021/bi00564a001. [DOI] [PubMed] [Google Scholar]
  7. Björling S. C., Goldbeck R. A., Paquette S. J., Milder S. J., Kliger D. S. Allosteric intermediates in hemoglobin. 1. Nanosecond time-resolved circular dichroism spectroscopy. Biochemistry. 1996 Jul 2;35(26):8619–8627. doi: 10.1021/bi952247s. [DOI] [PubMed] [Google Scholar]
  8. Colombo M. F., Rau D. C., Parsegian V. A. Protein solvation in allosteric regulation: a water effect on hemoglobin. Science. 1992 May 1;256(5057):655–659. doi: 10.1126/science.1585178. [DOI] [PubMed] [Google Scholar]
  9. Colombo M. F., Seixas F. A. Novel allosteric conformation of human HB revealed by the hydration and anion effects on O(2) binding. Biochemistry. 1999 Sep 7;38(36):11741–11748. doi: 10.1021/bi9905361. [DOI] [PubMed] [Google Scholar]
  10. Courtenay E. S., Capp M. W., Anderson C. F., Record M. T., Jr Vapor pressure osmometry studies of osmolyte-protein interactions: implications for the action of osmoprotectants in vivo and for the interpretation of "osmotic stress" experiments in vitro. Biochemistry. 2000 Apr 18;39(15):4455–4471. doi: 10.1021/bi992887l. [DOI] [PubMed] [Google Scholar]
  11. Doster W. Viscosity scaling and protein dynamics. Biophys Chem. 1983 Mar;17(2):97–103. doi: 10.1016/0301-4622(83)80002-7. [DOI] [PubMed] [Google Scholar]
  12. Eaton W. A., Henry E. R., Hofrichter J. Application of linear free energy relations to protein conformational changes: the quaternary structural change of hemoglobin. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4472–4475. doi: 10.1073/pnas.88.10.4472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Esquerra R. M., Goldbeck R. A., Reaney S. H., Batchelder A. M., Wen Y., Lewis J. W., Kliger D. S. Multiple geminate ligand recombinations in human hemoglobin. Biophys J. 2000 Jun;78(6):3227–3239. doi: 10.1016/S0006-3495(00)76859-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fermi G., Perutz M. F., Shaanan B., Fourme R. The crystal structure of human deoxyhaemoglobin at 1.74 A resolution. J Mol Biol. 1984 May 15;175(2):159–174. doi: 10.1016/0022-2836(84)90472-8. [DOI] [PubMed] [Google Scholar]
  15. Findsen E. W., Friedman J. M., Ondrias M. R. Effect of solvent viscosity on the heme-pocket dynamics of photolyzed (carbonmonoxy)hemoglobin. Biochemistry. 1988 Nov 29;27(24):8719–8724. doi: 10.1021/bi00424a005. [DOI] [PubMed] [Google Scholar]
  16. Friedman J. M., Lyons K. B. Transient Raman study of CO-haemoprotein photolysis: origin of the quantum yield. Nature. 1980 Apr 10;284(5756):570–572. doi: 10.1038/284570a0. [DOI] [PubMed] [Google Scholar]
  17. Geraci G., Parkhurst L. J., Gibson Q. H. Preparation and properties of alpha- and beta-chains from human hemoglobin. J Biol Chem. 1969 Sep 10;244(17):4664–4667. [PubMed] [Google Scholar]
  18. Goldbeck R. A., Kliger D. S. Nanosecond time-resolved absorption and polarization dichroism spectroscopies. Methods Enzymol. 1993;226:147–177. doi: 10.1016/0076-6879(93)26009-x. [DOI] [PubMed] [Google Scholar]
  19. Goldbeck R. A., Paquette S. J., Björling S. C., Kliger D. S. Allosteric intermediates in hemoglobin. 2. Kinetic modeling of HbCO photolysis. Biochemistry. 1996 Jul 2;35(26):8628–8639. doi: 10.1021/bi952248k. [DOI] [PubMed] [Google Scholar]
  20. Hofrichter J., Sommer J. H., Henry E. R., Eaton W. A. Nanosecond absorption spectroscopy of hemoglobin: elementary processes in kinetic cooperativity. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2235–2239. doi: 10.1073/pnas.80.8.2235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Janin J., Wodak S. J. Reaction pathway for the quaternary structure change in hemoglobin. Biopolymers. 1985 Mar;24(3):509–526. doi: 10.1002/bip.360240307. [DOI] [PubMed] [Google Scholar]
  22. Jayaraman V., Rodgers K. R., Mukerji I., Spiro T. G. Hemoglobin allostery: resonance Raman spectroscopy of kinetic intermediates. Science. 1995 Sep 29;269(5232):1843–1848. doi: 10.1126/science.7569921. [DOI] [PubMed] [Google Scholar]
  23. Lavalette D., Tetreau C. Viscosity-dependent energy barriers and equilibrium conformational fluctuations in oxygen recombination with hemerythrin. Eur J Biochem. 1988 Oct 15;177(1):97–108. doi: 10.1111/j.1432-1033.1988.tb14349.x. [DOI] [PubMed] [Google Scholar]
  24. Lee J. C., Lee L. L. Preferential solvent interactions between proteins and polyethylene glycols. J Biol Chem. 1981 Jan 25;256(2):625–631. [PubMed] [Google Scholar]
  25. Lesk A. M., Janin J., Wodak S., Chothia C. Haemoglobin: the surface buried between the alpha 1 beta 1 and alpha 2 beta 2 dimers in the deoxy and oxy structures. J Mol Biol. 1985 May 25;183(2):267–270. doi: 10.1016/0022-2836(85)90219-0. [DOI] [PubMed] [Google Scholar]
  26. LiCata V. J., Allewell N. M. Measuring hydration changes of proteins in solution: applications of osmotic stress and structure-based calculations. Methods Enzymol. 1998;295:42–62. doi: 10.1016/s0076-6879(98)95034-0. [DOI] [PubMed] [Google Scholar]
  27. McKinnie R. E., Olson J. S. Effects of solvent composition and viscosity on the rates of CO binding to heme proteins. J Biol Chem. 1981 Sep 10;256(17):8928–8932. [PubMed] [Google Scholar]
  28. Mitchell D. C., Litman B. J. Effect of protein hydration on receptor conformation: decreased levels of bound water promote metarhodopsin II formation. Biochemistry. 1999 Jun 15;38(24):7617–7623. doi: 10.1021/bi990634m. [DOI] [PubMed] [Google Scholar]
  29. Mouawad L., Perahia D. Motions in hemoglobin studied by normal mode analysis and energy minimization: evidence for the existence of tertiary T-like, quaternary R-like intermediate structures. J Mol Biol. 1996 May 3;258(2):393–410. doi: 10.1006/jmbi.1996.0257. [DOI] [PubMed] [Google Scholar]
  30. Murray L. P., Hofrichter J., Henry E. R., Eaton W. A. Time-resolved optical spectroscopy and structural dynamics following photodissociation of carbonmonoxyhemoglobin. Biophys Chem. 1988 Feb;29(1-2):63–76. doi: 10.1016/0301-4622(88)87025-x. [DOI] [PubMed] [Google Scholar]
  31. Parsegian V. A., Rand R. P., Rau D. C. Macromolecules and water: probing with osmotic stress. Methods Enzymol. 1995;259:43–94. doi: 10.1016/0076-6879(95)59039-0. [DOI] [PubMed] [Google Scholar]
  32. Parsegian V. A., Rand R. P., Rau D. C. Osmotic stress, crowding, preferential hydration, and binding: A comparison of perspectives. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):3987–3992. doi: 10.1073/pnas.97.8.3987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Perutz M. F., Ladner J. E., Simon S. R., Ho C. Influence of globin structure on the state of the heme. I. Human deoxyhemoglobin. Biochemistry. 1974 May 7;13(10):2163–2173. doi: 10.1021/bi00707a026. [DOI] [PubMed] [Google Scholar]
  34. Perutz M. F. Stereochemistry of cooperative effects in haemoglobin. Nature. 1970 Nov 21;228(5273):726–739. doi: 10.1038/228726a0. [DOI] [PubMed] [Google Scholar]
  35. Sawicki C. A., Gibson Q. H. Quaternary conformational changes in human hemoglobin studied by laser photolysis of carboxyhemoglobin. J Biol Chem. 1976 Mar 25;251(6):1533–1542. [PubMed] [Google Scholar]
  36. Sawicki C. A., Khaleque M. A. Laser photolysis study of conformational change rates for hemoglobin in viscous solutions. Biophys J. 1983 Nov;44(2):191–199. doi: 10.1016/S0006-3495(83)84291-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shapiro D. B., Goldbeck R. A., Che D., Esquerra R. M., Paquette S. J., Kliger D. S. Nanosecond optical rotatory dispersion spectroscopy: application to photolyzed hemoglobin-CO kinetics. Biophys J. 1995 Jan;68(1):326–334. doi: 10.1016/S0006-3495(95)80191-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Stock J. B., Rauch B., Roseman S. Periplasmic space in Salmonella typhimurium and Escherichia coli. J Biol Chem. 1977 Nov 10;252(21):7850–7861. [PubMed] [Google Scholar]
  39. Szabo A. Kinetics of hemoglobin and transition state theory. Proc Natl Acad Sci U S A. 1978 May;75(5):2108–2111. doi: 10.1073/pnas.75.5.2108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yedgar S., Tetreau C., Gavish B., Lavalette D. Viscosity dependence of O2 escape from respiratory proteins as a function of cosolvent molecular weight. Biophys J. 1995 Feb;68(2):665–670. doi: 10.1016/S0006-3495(95)80227-4. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES