Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Nov;81(5):2972–2978. doi: 10.1016/S0006-3495(01)75937-1

Progressive rearrangement of subtilisin Carlsberg into orderly and inflexible conformation with Ca(2+) binding.

S Lee 1, D J Jang 1
PMCID: PMC1301761  PMID: 11606307

Abstract

Fluorescence depolarization and decay kinetic profiles, together with differential scanning calorimetric thermograms and circular dichroism spectra, are measured to understand the respective roles of Ca(2+) ions at the strong (Ca1) and weak binding sites (Ca2) of subtilisin Carlsberg (sC). Thermal denaturation temperature decreases considerably with Ca1 removal, whereas it does slightly with Ca2 removal. The fraction of random coil structure increases significantly with Ca2 removal as well as with Ca1 removal. sC shows three fluorescence decay times of 100, 1100, and 3300 ps. Although the fast and the slow do not change noticeably, the medium one decreases progressively with Ca(2+) removal. sC has two fluorescence anisotropic decay components of 340 and 12,000 ps. The fast one arises from the internal rotation of Tyr, whereas the slow results from the global rotation of sC. Although both become significantly faster with Ca2 removal, only the slow one becomes slightly faster with further Ca1 removal. Overall, sC undergoes progressive rearrangement into disorderly and flexible conformation with Ca(2+) removal, indicating that both Ca1 and Ca2 are indispensable for the stable structure of sC.

Full Text

The Full Text of this article is available as a PDF (115.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bode W., Papamokos E., Musil D. The high-resolution X-ray crystal structure of the complex formed between subtilisin Carlsberg and eglin c, an elastase inhibitor from the leech Hirudo medicinalis. Structural analysis, subtilisin structure and interface geometry. Eur J Biochem. 1987 Aug 3;166(3):673–692. doi: 10.1111/j.1432-1033.1987.tb13566.x. [DOI] [PubMed] [Google Scholar]
  2. Carter P., Wells J. A. Dissecting the catalytic triad of a serine protease. Nature. 1988 Apr 7;332(6164):564–568. doi: 10.1038/332564a0. [DOI] [PubMed] [Google Scholar]
  3. Chang C. T., Wu C. S., Yang J. T. Circular dichroic analysis of protein conformation: inclusion of the beta-turns. Anal Biochem. 1978 Nov;91(1):13–31. doi: 10.1016/0003-2697(78)90812-6. [DOI] [PubMed] [Google Scholar]
  4. Fitzpatrick P. A., Ringe D., Klibanov A. M. X-ray crystal structure of cross-linked subtilisin Carlsberg in water vs. acetonitrile. Biochem Biophys Res Commun. 1994 Jan 28;198(2):675–681. doi: 10.1006/bbrc.1994.1098. [DOI] [PubMed] [Google Scholar]
  5. Genov N., Filippi B., Dolashka P., Wilson K. S., Betzel C. Stability of subtilisins and related proteinases (subtilases). Int J Pept Protein Res. 1995 Apr;45(4):391–400. doi: 10.1111/j.1399-3011.1995.tb01054.x. [DOI] [PubMed] [Google Scholar]
  6. Grinvald A., Steinberg I. Z. The fluorescence decay of tryptophan residues in native and denatured proteins. Biochim Biophys Acta. 1976 Apr 14;427(2):663–678. doi: 10.1016/0005-2795(76)90210-5. [DOI] [PubMed] [Google Scholar]
  7. Handel T. M., Williams S. A., DeGrado W. F. Metal ion-dependent modulation of the dynamics of a designed protein. Science. 1993 Aug 13;261(5123):879–885. doi: 10.1126/science.8346440. [DOI] [PubMed] [Google Scholar]
  8. Lakowicz J. R., Maliwal B. P., Cherek H., Balter A. Rotational freedom of tryptophan residues in proteins and peptides. Biochemistry. 1983 Apr 12;22(8):1741–1752. doi: 10.1021/bi00277a001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lakshmikanth G. S., Krishnamoorthy G. Solvent-exposed tryptophans probe the dynamics at protein surfaces. Biophys J. 1999 Aug;77(2):1100–1106. doi: 10.1016/S0006-3495(99)76960-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lee S., Jang D. J. Cation-binding sites of subtilisin Carlsberg probed with Eu(III) luminescence. Biophys J. 2000 Oct;79(4):2171–2177. doi: 10.1016/S0006-3495(00)76465-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McPhalen C. A., James M. N. Structural comparison of two serine proteinase-protein inhibitor complexes: eglin-c-subtilisin Carlsberg and CI-2-subtilisin Novo. Biochemistry. 1988 Aug 23;27(17):6582–6598. [PubMed] [Google Scholar]
  12. Neidhart D. J., Petsko G. A. The refined crystal structure of subtilisin Carlsberg at 2.5 A resolution. Protein Eng. 1988 Oct;2(4):271–276. doi: 10.1093/protein/2.4.271. [DOI] [PubMed] [Google Scholar]
  13. Nishimoto E., Yamashita S., Szabo A. G., Imoto T. Internal motion of lysozyme studied by time-resolved fluorescence depolarization of tryptophan residues. Biochemistry. 1998 Apr 21;37(16):5599–5607. doi: 10.1021/bi9718651. [DOI] [PubMed] [Google Scholar]
  14. Pantoliano M. W., Whitlow M., Wood J. F., Dodd S. W., Hardman K. D., Rollence M. L., Bryan P. N. Large increases in general stability for subtilisin BPN' through incremental changes in the free energy of unfolding. Biochemistry. 1989 Sep 5;28(18):7205–7213. doi: 10.1021/bi00444a012. [DOI] [PubMed] [Google Scholar]
  15. Pantoliano M. W., Whitlow M., Wood J. F., Rollence M. L., Finzel B. C., Gilliland G. L., Poulos T. L., Bryan P. N. The engineering of binding affinity at metal ion binding sites for the stabilization of proteins: subtilisin as a test case. Biochemistry. 1988 Nov 1;27(22):8311–8317. doi: 10.1021/bi00422a004. [DOI] [PubMed] [Google Scholar]
  16. Saxena V. P., Wetlaufer D. B. A new basis for interpreting the circular dichroic spectra of proteins. Proc Natl Acad Sci U S A. 1971 May;68(5):969–972. doi: 10.1073/pnas.68.5.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Siezen R. J., de Vos W. M., Leunissen J. A., Dijkstra B. W. Homology modelling and protein engineering strategy of subtilases, the family of subtilisin-like serine proteinases. Protein Eng. 1991 Oct;4(7):719–737. doi: 10.1093/protein/4.7.719. [DOI] [PubMed] [Google Scholar]
  18. Smith E. L., DeLange R. J., Evans W. H., Landon M., Markland F. S. Subtilisin Carlsberg. V. The complete sequence; comparison with subtilisin BPN'; evolutionary relationships. J Biol Chem. 1968 May 10;243(9):2184–2191. [PubMed] [Google Scholar]
  19. Strausberg S., Alexander P., Wang L., Gallagher T., Gilliland G., Bryan P. An engineered disulfide cross-link accelerates the refolding rate of calcium-free subtilisin by 850-fold. Biochemistry. 1993 Oct 5;32(39):10371–10377. doi: 10.1021/bi00090a012. [DOI] [PubMed] [Google Scholar]
  20. Voordouw G., Milo C., Roche R. S. Role of bound calcium ions in thermostable, proteolytic enzymes. Separation of intrinsic and calcium ion contributions to the kinetic thermal stability. Biochemistry. 1976 Aug 24;15(17):3716–3724. doi: 10.1021/bi00662a012. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES