Abstract
A challenge in the understanding of creatine kinase (CK) fluxes reflected by NMR magnetization transfer in the perfused rat heart is the choice of a kinetic model of analysis. The complexity of the energetic pathways, due to the presence of adenosine triphosphate (ATP)-inorganic phosphate (Pi) exchange, of metabolite compartmentation and of subcellular localization of CK isozymes cannot be resolve from the sole information obtained from a single NMR protocol. To analyze multicompartment exchanges, we propose a new strategy based on the simultaneous analysis of four inversion transfer protocols. The time course of ATP and Phosphocreatine (PCr) magnetizations computed from the McConnell equations were adjusted to their experimental value for exchange networks of increasing complexity (up to six metabolite pools). Exchange schemes were selected by the quality of their fit and their consistency with data from other sources: the size of mitochondrial pools and the ATP synthesis flux. The consideration of ATP-Pi exchange and of ATP compartmentation were insufficient to describe the data. The most appropriate exchange scheme in our normoxic heart involved the discrimination of three specific CK activities (cytosolic, mitochondrial, and close to ATPases). At the present level of heart contractility, the energy is transferred from mitochondria to myofibrils mainly by PCr.
Full Text
The Full Text of this article is available as a PDF (137.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aliev M. K., Saks V. A. Compartmentalized energy transfer in cardiomyocytes: use of mathematical modeling for analysis of in vivo regulation of respiration. Biophys J. 1997 Jul;73(1):428–445. doi: 10.1016/S0006-3495(97)78082-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arrio-Dupont M., Béchet J. J., d'Albis A. A model system of coupled activity of co-immobilized creatine kinase and myosin. Eur J Biochem. 1992 Aug 1;207(3):951–955. doi: 10.1111/j.1432-1033.1992.tb17129.x. [DOI] [PubMed] [Google Scholar]
- Asimakis G. K., Sordahl L. A. Intramitochondrial adenine nucleotides and energy-linked functions of heart mitochondria. Am J Physiol. 1981 Nov;241(5):H672–H678. doi: 10.1152/ajpheart.1981.241.5.H672. [DOI] [PubMed] [Google Scholar]
- Bessman S. P., Geiger P. J. Transport of energy in muscle: the phosphorylcreatine shuttle. Science. 1981 Jan 30;211(4481):448–452. doi: 10.1126/science.6450446. [DOI] [PubMed] [Google Scholar]
- Bittl J. A., Ingwall J. S. Reaction rates of creatine kinase and ATP synthesis in the isolated rat heart. A 31P NMR magnetization transfer study. J Biol Chem. 1985 Mar 25;260(6):3512–3517. [PubMed] [Google Scholar]
- Geisbuhler T., Altschuld R. A., Trewyn R. W., Ansel A. Z., Lamka K., Brierley G. P. Adenine nucleotide metabolism and compartmentalization in isolated adult rat heart cells. Circ Res. 1984 May;54(5):536–546. doi: 10.1161/01.res.54.5.536. [DOI] [PubMed] [Google Scholar]
- Hoerter J. A., Lauer C., Vassort G., Guéron M. Sustained function of normoxic hearts depleted in ATP and phosphocreatine: a 31P-NMR study. Am J Physiol. 1988 Aug;255(2 Pt 1):C192–C201. doi: 10.1152/ajpcell.1988.255.2.C192. [DOI] [PubMed] [Google Scholar]
- Jeneson J. A., Westerhoff H. V., Kushmerick M. J. A metabolic control analysis of kinetic controls in ATP free energy metabolism in contracting skeletal muscle. Am J Physiol Cell Physiol. 2000 Sep;279(3):C813–C832. doi: 10.1152/ajpcell.2000.279.3.C813. [DOI] [PubMed] [Google Scholar]
- Joubert F., Gillet B., Mazet J. L., Mateo P., Beloeil J., Hoerter J. A. Evidence for myocardial ATP compartmentation from NMR inversion transfer analysis of creatine kinase fluxes. Biophys J. 2000 Jul;79(1):1–13. doi: 10.1016/s0006-3495(00)76269-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Joubert F., Vrezas I., Mateo P., Gillet B., Beloeil J. C., Soboll S., Hoerter J. A. Cardiac creatine kinase metabolite compartments revealed by NMR magnetization transfer spectroscopy and subcellular fractionation. Biochemistry. 2001 Feb 20;40(7):2129–2137. doi: 10.1021/bi001695j. [DOI] [PubMed] [Google Scholar]
- Kemp G. J., Manners D. N., Clark J. F., Bastin M. E., Radda G. K. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle. Mol Cell Biochem. 1998 Jul;184(1-2):249–289. [PubMed] [Google Scholar]
- Koretsky A. P., Basus V. J., James T. L., Klein M. P., Weiner M. W. Detection of exchange reactions involving small metabolite pools using NMR magnetization transfer techniques: relevance to subcellular compartmentation of creatine kinase. Magn Reson Med. 1985 Dec;2(6):586–594. doi: 10.1002/mrm.1910020610. [DOI] [PubMed] [Google Scholar]
- Koretsky A. P., Wang S., Klein M. P., James T. L., Weiner M. W. 31P NMR saturation transfer measurements of phosphorus exchange reactions in rat heart and kidney in situ. Biochemistry. 1986 Jan 14;25(1):77–84. doi: 10.1021/bi00349a012. [DOI] [PubMed] [Google Scholar]
- Kupriyanov V. V., Ya Steinschneider A., Ruuge E. K., Kapel'ko V. I., Yu Zueva M., Lakomkin V. L., Smirnov V. N., Saks V. A. Regulation of energy flux through the creatine kinase reaction in vitro and in perfused rat heart. 31P-NMR studies. Biochim Biophys Acta. 1984 Dec 11;805(4):319–331. doi: 10.1016/0167-4889(84)90014-4. [DOI] [PubMed] [Google Scholar]
- Matthews P. M., Bland J. L., Gadian D. G., Radda G. K. A 31P-NMR saturation transfer study of the regulation of creatine kinase in the rat heart. Biochim Biophys Acta. 1982 Nov 17;721(3):312–320. doi: 10.1016/0167-4889(82)90084-2. [DOI] [PubMed] [Google Scholar]
- McFarland E. W., Kushmerick M. J., Moerland T. S. Activity of creatine kinase in a contracting mammalian muscle of uniform fiber type. Biophys J. 1994 Nov;67(5):1912–1924. doi: 10.1016/S0006-3495(94)80674-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyer R. A., Kuchmerick M. J., Brown T. R. Application of 31P-NMR spectroscopy to the study of striated muscle metabolism. Am J Physiol. 1982 Jan;242(1):C1–11. doi: 10.1152/ajpcell.1982.242.1.C1. [DOI] [PubMed] [Google Scholar]
- Nunnally R. L., Hollis D. P. Adenosine triphosphate compartmentation in living hearts: a phosphorus nuclear magnetic resonance saturation transfer study. Biochemistry. 1979 Aug 7;18(16):3642–3646. doi: 10.1021/bi00583a032. [DOI] [PubMed] [Google Scholar]
- Saks V. A., Kuznetsov A. V., Kupriyanov V. V., Miceli M. V., Jacobus W. E. Creatine kinase of rat heart mitochondria. The demonstration of functional coupling to oxidative phosphorylation in an inner membrane-matrix preparation. J Biol Chem. 1985 Jun 25;260(12):7757–7764. [PubMed] [Google Scholar]
- Saks V. A., Ventura-Clapier R., Aliev M. K. Metabolic control and metabolic capacity: two aspects of creatine kinase functioning in the cells. Biochim Biophys Acta. 1996 Jun 13;1274(3):81–88. doi: 10.1016/0005-2728(96)00011-4. [DOI] [PubMed] [Google Scholar]
- Spencer R. G., Balschi J. A., Leigh J. S., Jr, Ingwall J. S. ATP synthesis and degradation rates in the perfused rat heart. 31P-nuclear magnetic resonance double saturation transfer measurements. Biophys J. 1988 Nov;54(5):921–929. doi: 10.1016/S0006-3495(88)83028-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stepanov V., Mateo P., Gillet B., Beloeil J. C., Lechene P., Hoerter J. A. Kinetics of creatine kinase in an experimental model of low phosphocreatine and ATP in the normoxic heart. Am J Physiol. 1997 Oct;273(4 Pt 1):C1397–C1408. doi: 10.1152/ajpcell.1997.273.4.C1397. [DOI] [PubMed] [Google Scholar]
- Uğurbil K., Petein M., Maidan R., Michurski S., From A. H. Measurement of an individual rate constant in the presence of multiple exchanges: application to myocardial creatine kinase reaction. Biochemistry. 1986 Jan 14;25(1):100–107. doi: 10.1021/bi00349a015. [DOI] [PubMed] [Google Scholar]
- Vendelin M., Kongas O., Saks V. Regulation of mitochondrial respiration in heart cells analyzed by reaction-diffusion model of energy transfer. Am J Physiol Cell Physiol. 2000 Apr;278(4):C747–C764. doi: 10.1152/ajpcell.2000.278.4.C747. [DOI] [PubMed] [Google Scholar]
- Ventura-Clapier R., Saks V. A., Vassort G., Lauer C., Elizarova G. V. Reversible MM-creatine kinase binding to cardiac myofibrils. Am J Physiol. 1987 Sep;253(3 Pt 1):C444–C455. doi: 10.1152/ajpcell.1987.253.3.C444. [DOI] [PubMed] [Google Scholar]
- Ventura-Clapier R., Veksler V., Hoerter J. A. Myofibrillar creatine kinase and cardiac contraction. Mol Cell Biochem. 1994 Apr-May;133-134:125–144. doi: 10.1007/BF01267952. [DOI] [PubMed] [Google Scholar]
- Wallimann T. 31P-NMR-measured creatine kinase reaction flux in muscle: a caveat! J Muscle Res Cell Motil. 1996 Apr;17(2):177–181. doi: 10.1007/BF00124240. [DOI] [PubMed] [Google Scholar]
- Wallimann T., Wyss M., Brdiczka D., Nicolay K., Eppenberger H. M. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. Biochem J. 1992 Jan 1;281(Pt 1):21–40. doi: 10.1042/bj2810021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zahler R., Bittl J. A., Ingwall J. S. Analysis of compartmentation of ATP in skeletal and cardiac muscle using 31P nuclear magnetic resonance saturation transfer. Biophys J. 1987 Jun;51(6):883–893. doi: 10.1016/S0006-3495(87)83416-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zahler R., Ingwall J. S. Estimation of heart mitochondrial creatine kinase flux using magnetization transfer NMR spectroscopy. Am J Physiol. 1992 Apr;262(4 Pt 2):H1022–H1028. doi: 10.1152/ajpheart.1992.262.4.H1022. [DOI] [PubMed] [Google Scholar]
- Zeleznikar R. J., Goldberg N. D. Kinetics and compartmentation of energy metabolism in intact skeletal muscle determined from 18O labeling of metabolite phosphoryls. J Biol Chem. 1991 Aug 15;266(23):15110–15119. [PubMed] [Google Scholar]