Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Dec;81(6):3052–3065. doi: 10.1016/S0006-3495(01)75944-9

Influence of a lipid interface on protein dynamics in a fungal lipase.

G H Peters 1, R P Bywater 1
PMCID: PMC1301768  PMID: 11720974

Abstract

Lipases catalyze lipolytic reactions and for optimal activity they require a lipid interface. To study the effect of a lipid aggregate on the behavior of the enzyme at the interfacial plane and how the aggregate influences an attached substrate or product molecule in time and space, we have performed molecular dynamics simulations. The simulations were performed over 1 to 2 ns using explicit SPC water. The interaction energies between protein and lipid are mainly due to van der Waals contributions reflecting the hydrophobic nature of the lipid molecules. Estimations of the protonation state of titratable residues indicated that the negative charge on the fatty acid is stabilized by interactions with the titratable residues Tyr-28, His-143, and His-257. In the presence of a lipid patch, the active site lid opens wider than observed in the corresponding simulations in an aqueous environment. In that lid conformation, the hydrophobic residues Ile-85, Ile-89, and Leu-92 are embedded in the lipid patch. The behavior of the substrate or product molecule is sensitive to the environment. Entering and leaving of substrate molecules could be observed in presence of the lipid patch, whereas the product forms strong hydrogen bonds with Ser-82, Ser-144, and Trp-88, suggesting that the formation of hydrogen bonds may be an important contribution to the mechanism by which product inhibition might take place.

Full Text

The Full Text of this article is available as a PDF (969.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amadei A., Linssen A. B., Berendsen H. J. Essential dynamics of proteins. Proteins. 1993 Dec;17(4):412–425. doi: 10.1002/prot.340170408. [DOI] [PubMed] [Google Scholar]
  2. Antosiewicz J., McCammon J. A., Gilson M. K. Prediction of pH-dependent properties of proteins. J Mol Biol. 1994 May 6;238(3):415–436. doi: 10.1006/jmbi.1994.1301. [DOI] [PubMed] [Google Scholar]
  3. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  4. Brady L., Brzozowski A. M., Derewenda Z. S., Dodson E., Dodson G., Tolley S., Turkenburg J. P., Christiansen L., Huge-Jensen B., Norskov L. A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature. 1990 Feb 22;343(6260):767–770. doi: 10.1038/343767a0. [DOI] [PubMed] [Google Scholar]
  5. Brzozowski A. M., Derewenda U., Derewenda Z. S., Dodson G. G., Lawson D. M., Turkenburg J. P., Bjorkling F., Huge-Jensen B., Patkar S. A., Thim L. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature. 1991 Jun 6;351(6326):491–494. doi: 10.1038/351491a0. [DOI] [PubMed] [Google Scholar]
  6. Burden L. M., Rao V. D., Murray D., Ghirlando R., Doughman S. D., Anderson R. A., Hurley J. H. The flattened face of type II beta phosphatidylinositol phosphate kinase binds acidic phospholipid membranes. Biochemistry. 1999 Nov 16;38(46):15141–15149. doi: 10.1021/bi991571a. [DOI] [PubMed] [Google Scholar]
  7. DESNUELLE P., SARDA L., AILHAUD G. [Inhibition of pancreatic lipase by diethyl-p-nitrophenyl phosphate in emulation]. Biochim Biophys Acta. 1960 Jan 29;37:570–571. doi: 10.1016/0006-3002(60)90532-1. [DOI] [PubMed] [Google Scholar]
  8. Derewenda U., Brzozowski A. M., Lawson D. M., Derewenda Z. S. Catalysis at the interface: the anatomy of a conformational change in a triglyceride lipase. Biochemistry. 1992 Feb 11;31(5):1532–1541. doi: 10.1021/bi00120a034. [DOI] [PubMed] [Google Scholar]
  9. Derewenda U., Swenson L., Green R., Wei Y., Dodson G. G., Yamaguchi S., Haas M. J., Derewenda Z. S. An unusual buried polar cluster in a family of fungal lipases. Nat Struct Biol. 1994 Jan;1(1):36–47. doi: 10.1038/nsb0194-36. [DOI] [PubMed] [Google Scholar]
  10. Derewenda U., Swenson L., Wei Y., Green R., Kobos P. M., Joerger R., Haas M. J., Derewenda Z. S. Conformational lability of lipases observed in the absence of an oil-water interface: crystallographic studies of enzymes from the fungi Humicola lanuginosa and Rhizopus delemar. J Lipid Res. 1994 Mar;35(3):524–534. [PubMed] [Google Scholar]
  11. Derewenda Z. S. Structure and function of lipases. Adv Protein Chem. 1994;45:1–52. doi: 10.1016/s0065-3233(08)60637-3. [DOI] [PubMed] [Google Scholar]
  12. Dowhan W. Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu Rev Biochem. 1997;66:199–232. doi: 10.1146/annurev.biochem.66.1.199. [DOI] [PubMed] [Google Scholar]
  13. Dumas F., Lebrun M. C., Tocanne J. F. Is the protein/lipid hydrophobic matching principle relevant to membrane organization and functions? FEBS Lett. 1999 Sep 24;458(3):271–277. doi: 10.1016/s0014-5793(99)01148-5. [DOI] [PubMed] [Google Scholar]
  14. Egloff M. P., Marguet F., Buono G., Verger R., Cambillau C., van Tilbeurgh H. The 2.46 A resolution structure of the pancreatic lipase-colipase complex inhibited by a C11 alkyl phosphonate. Biochemistry. 1995 Mar 7;34(9):2751–2762. doi: 10.1021/bi00009a003. [DOI] [PubMed] [Google Scholar]
  15. Gilson M. K. Multiple-site titration and molecular modeling: two rapid methods for computing energies and forces for ionizable groups in proteins. Proteins. 1993 Mar;15(3):266–282. doi: 10.1002/prot.340150305. [DOI] [PubMed] [Google Scholar]
  16. Honig B., Nicholls A. Classical electrostatics in biology and chemistry. Science. 1995 May 26;268(5214):1144–1149. doi: 10.1126/science.7761829. [DOI] [PubMed] [Google Scholar]
  17. Lindeberg M., Zakharov S. D., Cramer W. A. Unfolding pathway of the colicin E1 channel protein on a membrane surface. J Mol Biol. 2000 Jan 21;295(3):679–692. doi: 10.1006/jmbi.1999.3396. [DOI] [PubMed] [Google Scholar]
  18. Mouritsen O. G., Jørgensen K. A new look at lipid-membrane structure in relation to drug research. Pharm Res. 1998 Oct;15(10):1507–1519. doi: 10.1023/a:1011986613392. [DOI] [PubMed] [Google Scholar]
  19. Muderhwa J. M., Brockman H. L. Lateral lipid distribution is a major regulator of lipase activity. Implications for lipid-mediated signal transduction. J Biol Chem. 1992 Dec 5;267(34):24184–24192. [PubMed] [Google Scholar]
  20. Peters G. H., Frimurer T. M., Andersen J. N., Olsen O. H. Molecular dynamics simulations of protein-tyrosine phosphatase 1B. I. ligand-induced changes in the protein motions. Biophys J. 1999 Jul;77(1):505–515. doi: 10.1016/S0006-3495(99)76907-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Peters G. H., Frimurer T. M., Olsen O. H. Electrostatic evaluation of the signature motif (H/V)CX5R(S/T) in protein-tyrosine phosphatases. Biochemistry. 1998 Apr 21;37(16):5383–5393. doi: 10.1021/bi971187i. [DOI] [PubMed] [Google Scholar]
  22. Peters G. H., Jensen M. O., Bywater R. P. Dynamics of the substrate binding pocket in the presence of an inhibitor covalently attached to a fungal lipase. J Biomol Struct Dyn. 2001 Aug;19(1):1–14. doi: 10.1080/07391102.2001.10506716. [DOI] [PubMed] [Google Scholar]
  23. Peters G. H., Olsen O. H., Svendsen A., Wade R. C. Theoretical investigation of the dynamics of the active site lid in Rhizomucor miehei lipase. Biophys J. 1996 Jul;71(1):119–129. doi: 10.1016/S0006-3495(96)79207-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Peters G. H., Toxvaerd S., Larsen N. B., Bjørnholm T., Schaumburg K., Kjaer K. Structure and dynamics of lipid monolayers: implications for enzyme catalysed lipolysis. Nat Struct Biol. 1995 May;2(5):395–401. doi: 10.1038/nsb0595-395. [DOI] [PubMed] [Google Scholar]
  25. Peters G. H., Toxvaerd S., Olsen O. H., Svendsen A. Computational studies of the activation of lipases and the effect of a hydrophobic environment. Protein Eng. 1997 Feb;10(2):137–147. doi: 10.1093/protein/10.2.137. [DOI] [PubMed] [Google Scholar]
  26. Peters G. H., van Aalten D. M., Edholm O., Toxvaerd S., Bywater R. Dynamics of proteins in different solvent systems: analysis of essential motion in lipases. Biophys J. 1996 Nov;71(5):2245–2255. doi: 10.1016/S0006-3495(96)79428-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Peters G. H., van Aalten D. M., Svendsen A., Bywater R. Essential dynamics of lipase binding sites: the effect of inhibitors of different chain length. Protein Eng. 1997 Feb;10(2):149–158. doi: 10.1093/protein/10.2.149. [DOI] [PubMed] [Google Scholar]
  28. Prenner E. J., Lewis R. N., McElhaney R. N. The interaction of the antimicrobial peptide gramicidin S with lipid bilayer model and biological membranes. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):201–221. doi: 10.1016/s0005-2736(99)00207-2. [DOI] [PubMed] [Google Scholar]
  29. SARDA L., DESNUELLE P. Action de la lipase pancréatique sur les esters en émulsion. Biochim Biophys Acta. 1958 Dec;30(3):513–521. doi: 10.1016/0006-3002(58)90097-0. [DOI] [PubMed] [Google Scholar]
  30. Seykora J. T., Myat M. M., Allen L. A., Ravetch J. V., Aderem A. Molecular determinants of the myristoyl-electrostatic switch of MARCKS. J Biol Chem. 1996 Aug 2;271(31):18797–18802. doi: 10.1074/jbc.271.31.18797. [DOI] [PubMed] [Google Scholar]
  31. Thuren T. A model for the molecular mechanism of interfacial activation of phospholipase A2 supporting the substrate theory. FEBS Lett. 1988 Feb 29;229(1):95–99. doi: 10.1016/0014-5793(88)80805-6. [DOI] [PubMed] [Google Scholar]
  32. Tocanne J. F., Dupou-Cézanne L., Lopez A. Lateral diffusion of lipids in model and natural membranes. Prog Lipid Res. 1994;33(3):203–237. doi: 10.1016/0163-7827(94)90027-2. [DOI] [PubMed] [Google Scholar]
  33. Vriend G. WHAT IF: a molecular modeling and drug design program. J Mol Graph. 1990 Mar;8(1):52-6, 29. doi: 10.1016/0263-7855(90)80070-v. [DOI] [PubMed] [Google Scholar]
  34. Warshel A., Aqvist J. Electrostatic energy and macromolecular function. Annu Rev Biophys Biophys Chem. 1991;20:267–298. doi: 10.1146/annurev.bb.20.060191.001411. [DOI] [PubMed] [Google Scholar]
  35. Warshel A., Russell S. T. Calculations of electrostatic interactions in biological systems and in solutions. Q Rev Biophys. 1984 Aug;17(3):283–422. doi: 10.1017/s0033583500005333. [DOI] [PubMed] [Google Scholar]
  36. Weers P. M., Narayanaswami V., Kay C. M., Ryan R. O. Interaction of an exchangeable apolipoprotein with phospholipid vesicles and lipoprotein particles. Role of leucines 32, 34, and 95 in Locusta migratoria apolipophorin III. J Biol Chem. 1999 Jul 30;274(31):21804–21810. doi: 10.1074/jbc.274.31.21804. [DOI] [PubMed] [Google Scholar]
  37. Winkler F. K., D'Arcy A., Hunziker W. Structure of human pancreatic lipase. Nature. 1990 Feb 22;343(6260):771–774. doi: 10.1038/343771a0. [DOI] [PubMed] [Google Scholar]
  38. Zídek L., Novotny M. V., Stone M. J. Increased protein backbone conformational entropy upon hydrophobic ligand binding. Nat Struct Biol. 1999 Dec;6(12):1118–1121. doi: 10.1038/70057. [DOI] [PubMed] [Google Scholar]
  39. van Aalten D. M., Amadei A., Linssen A. B., Eijsink V. G., Vriend G., Berendsen H. J. The essential dynamics of thermolysin: confirmation of the hinge-bending motion and comparison of simulations in vacuum and water. Proteins. 1995 May;22(1):45–54. doi: 10.1002/prot.340220107. [DOI] [PubMed] [Google Scholar]
  40. van Aalten D. M., Findlay J. B., Amadei A., Berendsen H. J. Essential dynamics of the cellular retinol-binding protein--evidence for ligand-induced conformational changes. Protein Eng. 1995 Nov;8(11):1129–1135. doi: 10.1093/protein/8.11.1129. [DOI] [PubMed] [Google Scholar]
  41. van Tilbeurgh H., Egloff M. P., Martinez C., Rugani N., Verger R., Cambillau C. Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X-ray crystallography. Nature. 1993 Apr 29;362(6423):814–820. doi: 10.1038/362814a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES