Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Dec;81(6):3193–3203. doi: 10.1016/S0006-3495(01)75955-3

Effects of intermediate filaments on actin-based motility of Listeria monocytogenes.

P A Giardini 1, J A Theriot 1
PMCID: PMC1301779  PMID: 11720985

Abstract

How does subcellular architecture influence the intracellular movements of large organelles and macromolecular assemblies? To investigate the effects of mechanical changes in cytoplasmic structure on intracellular motility, we have characterized the actin-based motility of the intracellular bacterial pathogen Listeria monocytogenes in normal mouse fibroblasts and in fibroblasts lacking intermediate filaments. The apparent diffusion coefficient of L. monocytogenes was two-fold greater in vimentin-null fibroblasts than in wild-type fibroblasts, indicating that intermediate filaments significantly restrict the Brownian motion of bacteria. However, the mean speed of L. monocytogenes actin-based motility was statistically identical in vimentin-null and wild-type cells. Thus, environmental drag is not rate limiting for bacterial motility. Analysis of the temporal variations in speed measurements indicated that bacteria in vimentin-null cells displayed larger fluctuations in speed than did trajectories in wild-type cells. Similarly, the presence of the vimentin meshwork influenced the turning behavior of the bacteria; in the vimentin-null cells, bacteria made sharper turns than they did in wild-type cells. Taken together, these results suggest that a network of intermediate filaments constrains bacterial movement and operates over distances of several microns to reduce fluctuations in motile behavior.

Full Text

The Full Text of this article is available as a PDF (180.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bishop D. K., Hinrichs D. J. Adoptive transfer of immunity to Listeria monocytogenes. The influence of in vitro stimulation on lymphocyte subset requirements. J Immunol. 1987 Sep 15;139(6):2005–2009. [PubMed] [Google Scholar]
  2. Brundage R. A., Smith G. A., Camilli A., Theriot J. A., Portnoy D. A. Expression and phosphorylation of the Listeria monocytogenes ActA protein in mammalian cells. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11890–11894. doi: 10.1073/pnas.90.24.11890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cameron L. A., Giardini P. A., Soo F. S., Theriot J. A. Secrets of actin-based motility revealed by a bacterial pathogen. Nat Rev Mol Cell Biol. 2000 Nov;1(2):110–119. doi: 10.1038/35040061. [DOI] [PubMed] [Google Scholar]
  4. Colucci-Guyon E., Portier M. M., Dunia I., Paulin D., Pournin S., Babinet C. Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell. 1994 Nov 18;79(4):679–694. doi: 10.1016/0092-8674(94)90553-3. [DOI] [PubMed] [Google Scholar]
  5. Correia I., Chu D., Chou Y. H., Goldman R. D., Matsudaira P. Integrating the actin and vimentin cytoskeletons. adhesion-dependent formation of fimbrin-vimentin complexes in macrophages. J Cell Biol. 1999 Aug 23;146(4):831–842. doi: 10.1083/jcb.146.4.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coulombe P. A., Bousquet O., Ma L., Yamada S., Wirtz D. The 'ins' and 'outs' of intermediate filament organization. Trends Cell Biol. 2000 Oct;10(10):420–428. doi: 10.1016/s0962-8924(00)01828-6. [DOI] [PubMed] [Google Scholar]
  7. Dabiri G. A., Sanger J. M., Portnoy D. A., Southwick F. S. Listeria monocytogenes moves rapidly through the host-cell cytoplasm by inducing directional actin assembly. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6068–6072. doi: 10.1073/pnas.87.16.6068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. David V., Gouin E., Troys M. V., Grogan A., Segal A. W., Ampe C., Cossart P. Identification of cofilin, coronin, Rac and capZ in actin tails using a Listeria affinity approach. J Cell Sci. 1998 Oct;111(Pt 19):2877–2884. doi: 10.1242/jcs.111.19.2877. [DOI] [PubMed] [Google Scholar]
  9. Eckes B., Dogic D., Colucci-Guyon E., Wang N., Maniotis A., Ingber D., Merckling A., Langa F., Aumailley M., Delouvée A. Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts. J Cell Sci. 1998 Jul;111(Pt 13):1897–1907. doi: 10.1242/jcs.111.13.1897. [DOI] [PubMed] [Google Scholar]
  10. Franke W. W., Moll R. Cytoskeletal components of lymphoid organs. I. Synthesis of cytokeratins 8 and 18 and desmin in subpopulations of extrafollicular reticulum cells of human lymph nodes, tonsils, and spleen. Differentiation. 1987;36(2):145–163. doi: 10.1111/j.1432-0436.1987.tb00189.x. [DOI] [PubMed] [Google Scholar]
  11. Fuchs E., Yang Y. Crossroads on cytoskeletal highways. Cell. 1999 Sep 3;98(5):547–550. doi: 10.1016/s0092-8674(00)80041-0. [DOI] [PubMed] [Google Scholar]
  12. Gerbal F., Chaikin P., Rabin Y., Prost J. An elastic analysis of Listeria monocytogenes propulsion. Biophys J. 2000 Nov;79(5):2259–2275. doi: 10.1016/S0006-3495(00)76473-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gerbal F., Laurent V., Ott A., Carlier M. F., Chaikin P., Prost J. Measurement of the elasticity of the actin tail of Listeria monocytogenes. Eur Biophys J. 2000;29(2):134–140. doi: 10.1007/s002490050258. [DOI] [PubMed] [Google Scholar]
  14. Goldman R. D., Khuon S., Chou Y. H., Opal P., Steinert P. M. The function of intermediate filaments in cell shape and cytoskeletal integrity. J Cell Biol. 1996 Aug;134(4):971–983. doi: 10.1083/jcb.134.4.971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goulian M., Simon S. M. Tracking single proteins within cells. Biophys J. 2000 Oct;79(4):2188–2198. doi: 10.1016/S0006-3495(00)76467-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Herrmann H., Aebi U. Intermediate filaments and their associates: multi-talented structural elements specifying cytoarchitecture and cytodynamics. Curr Opin Cell Biol. 2000 Feb;12(1):79–90. doi: 10.1016/s0955-0674(99)00060-5. [DOI] [PubMed] [Google Scholar]
  17. Hill T. L., Kirschner M. W. Bioenergetics and kinetics of microtubule and actin filament assembly-disassembly. Int Rev Cytol. 1982;78:1–125. [PubMed] [Google Scholar]
  18. Holwell T. A., Schweitzer S. C., Evans R. M. Tetracycline regulated expression of vimentin in fibroblasts derived from vimentin null mice. J Cell Sci. 1997 Aug;110(Pt 16):1947–1956. doi: 10.1242/jcs.110.16.1947. [DOI] [PubMed] [Google Scholar]
  19. Ingber D. E., Dike L., Hansen L., Karp S., Liley H., Maniotis A., McNamee H., Mooney D., Plopper G., Sims J. Cellular tensegrity: exploring how mechanical changes in the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenesis. Int Rev Cytol. 1994;150:173–224. doi: 10.1016/s0074-7696(08)61542-9. [DOI] [PubMed] [Google Scholar]
  20. Janmey P. A. Mechanical properties of cytoskeletal polymers. Curr Opin Cell Biol. 1991 Feb;3(1):4–11. doi: 10.1016/0955-0674(91)90159-v. [DOI] [PubMed] [Google Scholar]
  21. Janson L. W., Ragsdale K., Luby-Phelps K. Mechanism and size cutoff for steric exclusion from actin-rich cytoplasmic domains. Biophys J. 1996 Sep;71(3):1228–1234. doi: 10.1016/S0006-3495(96)79367-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kuo S. C., McGrath J. L. Steps and fluctuations of Listeria monocytogenes during actin-based motility. Nature. 2000 Oct 26;407(6807):1026–1029. doi: 10.1038/35039544. [DOI] [PubMed] [Google Scholar]
  23. Lasa I., Gouin E., Goethals M., Vancompernolle K., David V., Vandekerckhove J., Cossart P. Identification of two regions in the N-terminal domain of ActA involved in the actin comet tail formation by Listeria monocytogenes. EMBO J. 1997 Apr 1;16(7):1531–1540. doi: 10.1093/emboj/16.7.1531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Li M., Hantzopoulos P. A., Banerjee D., Zhao S. C., Schweitzer B. I., Gilboa E., Bertino J. R. Comparison of the expression of a mutant dihydrofolate reductase under control of different internal promoters in retroviral vectors. Hum Gene Ther. 1992 Aug;3(4):381–390. doi: 10.1089/hum.1992.3.4-381. [DOI] [PubMed] [Google Scholar]
  25. Loisel T. P., Boujemaa R., Pantaloni D., Carlier M. F. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature. 1999 Oct 7;401(6753):613–616. doi: 10.1038/44183. [DOI] [PubMed] [Google Scholar]
  26. Luby-Phelps K., Castle P. E., Taylor D. L., Lanni F. Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4910–4913. doi: 10.1073/pnas.84.14.4910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Luby-Phelps K. Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol. 2000;192:189–221. doi: 10.1016/s0074-7696(08)60527-6. [DOI] [PubMed] [Google Scholar]
  28. Luby-Phelps K. Physical properties of cytoplasm. Curr Opin Cell Biol. 1994 Feb;6(1):3–9. doi: 10.1016/0955-0674(94)90109-0. [DOI] [PubMed] [Google Scholar]
  29. Luby-Phelps K., Taylor D. L., Lanni F. Probing the structure of cytoplasm. J Cell Biol. 1986 Jun;102(6):2015–2022. doi: 10.1083/jcb.102.6.2015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Luby-Phelps K., Taylor D. L. Subcellular compartmentalization by local differentiation of cytoplasmic structure. Cell Motil Cytoskeleton. 1988;10(1-2):28–37. doi: 10.1002/cm.970100107. [DOI] [PubMed] [Google Scholar]
  31. May R. C., Hall M. E., Higgs H. N., Pollard T. D., Chakraborty T., Wehland J., Machesky L. M., Sechi A. S. The Arp2/3 complex is essential for the actin-based motility of Listeria monocytogenes. Curr Biol. 1999 Jul 15;9(14):759–762. doi: 10.1016/s0960-9822(99)80337-6. [DOI] [PubMed] [Google Scholar]
  32. Mogilner A., Oster G. Cell motility driven by actin polymerization. Biophys J. 1996 Dec;71(6):3030–3045. doi: 10.1016/S0006-3495(96)79496-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mounier J., Ryter A., Coquis-Rondon M., Sansonetti P. J. Intracellular and cell-to-cell spread of Listeria monocytogenes involves interaction with F-actin in the enterocytelike cell line Caco-2. Infect Immun. 1990 Apr;58(4):1048–1058. doi: 10.1128/iai.58.4.1048-1058.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nanavati D., Ashton F. T., Sanger J. M., Sanger J. W. Dynamics of actin and alpha-actinin in the tails of Listeria monocytogenes in infected PtK2 cells. Cell Motil Cytoskeleton. 1994;28(4):346–358. doi: 10.1002/cm.970280408. [DOI] [PubMed] [Google Scholar]
  35. Peskin C. S., Odell G. M., Oster G. F. Cellular motions and thermal fluctuations: the Brownian ratchet. Biophys J. 1993 Jul;65(1):316–324. doi: 10.1016/S0006-3495(93)81035-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Pollard T. D., Blanchoin L., Mullins R. D. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct. 2000;29:545–576. doi: 10.1146/annurev.biophys.29.1.545. [DOI] [PubMed] [Google Scholar]
  37. Pollard T. D. Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. J Cell Biol. 1986 Dec;103(6 Pt 2):2747–2754. doi: 10.1083/jcb.103.6.2747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Qian H., Sheetz M. P., Elson E. L. Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys J. 1991 Oct;60(4):910–921. doi: 10.1016/S0006-3495(91)82125-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Robbins J. R., Barth A. I., Marquis H., de Hostos E. L., Nelson W. J., Theriot J. A. Listeria monocytogenes exploits normal host cell processes to spread from cell to cell. J Cell Biol. 1999 Sep 20;146(6):1333–1350. doi: 10.1083/jcb.146.6.1333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sanger J. M., Sanger J. W., Southwick F. S. Host cell actin assembly is necessary and likely to provide the propulsive force for intracellular movement of Listeria monocytogenes. Infect Immun. 1992 Sep;60(9):3609–3619. doi: 10.1128/iai.60.9.3609-3619.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sarria A. J., Lieber J. G., Nordeen S. K., Evans R. M. The presence or absence of a vimentin-type intermediate filament network affects the shape of the nucleus in human SW-13 cells. J Cell Sci. 1994 Jun;107(Pt 6):1593–1607. doi: 10.1242/jcs.107.6.1593. [DOI] [PubMed] [Google Scholar]
  42. Saxton M. J. Single-particle tracking: the distribution of diffusion coefficients. Biophys J. 1997 Apr;72(4):1744–1753. doi: 10.1016/S0006-3495(97)78820-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Skoble J., Portnoy D. A., Welch M. D. Three regions within ActA promote Arp2/3 complex-mediated actin nucleation and Listeria monocytogenes motility. J Cell Biol. 2000 Aug 7;150(3):527–538. doi: 10.1083/jcb.150.3.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Smith G. A., Theriot J. A., Portnoy D. A. The tandem repeat domain in the Listeria monocytogenes ActA protein controls the rate of actin-based motility, the percentage of moving bacteria, and the localization of vasodilator-stimulated phosphoprotein and profilin. J Cell Biol. 1996 Nov;135(3):647–660. doi: 10.1083/jcb.135.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Svitkina T. M., Verkhovsky A. B., Borisy G. G. Plectin sidearms mediate interaction of intermediate filaments with microtubules and other components of the cytoskeleton. J Cell Biol. 1996 Nov;135(4):991–1007. doi: 10.1083/jcb.135.4.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Theriot J. A., Mitchison T. J., Tilney L. G., Portnoy D. A. The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization. Nature. 1992 May 21;357(6375):257–260. doi: 10.1038/357257a0. [DOI] [PubMed] [Google Scholar]
  47. Theriot J. A., Rosenblatt J., Portnoy D. A., Goldschmidt-Clermont P. J., Mitchison T. J. Involvement of profilin in the actin-based motility of L. monocytogenes in cells and in cell-free extracts. Cell. 1994 Feb 11;76(3):505–517. doi: 10.1016/0092-8674(94)90114-7. [DOI] [PubMed] [Google Scholar]
  48. Tilney L. G., Portnoy D. A. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol. 1989 Oct;109(4 Pt 1):1597–1608. doi: 10.1083/jcb.109.4.1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wang N., Butler J. P., Ingber D. E. Mechanotransduction across the cell surface and through the cytoskeleton. Science. 1993 May 21;260(5111):1124–1127. doi: 10.1126/science.7684161. [DOI] [PubMed] [Google Scholar]
  50. Welch M. D., Iwamatsu A., Mitchison T. J. Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature. 1997 Jan 16;385(6613):265–269. doi: 10.1038/385265a0. [DOI] [PubMed] [Google Scholar]
  51. Yamada S., Wirtz D., Kuo S. C. Mechanics of living cells measured by laser tracking microrheology. Biophys J. 2000 Apr;78(4):1736–1747. doi: 10.1016/S0006-3495(00)76725-7. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES