Abstract
In this investigation we use a "dyspedic" myogenic cell line, which does not express any ryanodine receptor (RyR) isoform, to examine the local Ca(2+) release behavior of RyR3 and RyR1 in a homologous cellular system. Expression of RyR3 restored caffeine-sensitive, global Ca(2+) release and causes the appearance of relatively frequent, spontaneous, spatially localized elevations of [Ca(2+)], as well as occasional spontaneous, propagating Ca(2+) release, in both intact and saponin-permeabilized myotubes. Intact myotubes expressing RyR3 did not, however, respond to K(+) depolarization. Expression of RyR1 restored depolarization-induced global Ca(2+) release in intact myotubes and caffeine-induced global release in both intact and permeabilized myotubes. Both intact and permeabilized RyR1-expressing myotubes exhibited relatively infrequent spontaneous Ca(2+) release events. In intact myotubes, the frequency of occurrence and properties of these RyR1-induced events were not altered by partial K(+) depolarization or by application of nifedipine, suggesting that these RyR1 events are independent of the voltage sensor. The events seen in RyR1-expressing myotubes were spatially more extensive than those seen in RyR3-expressing myotubes; however, when analysis was limited to spatially restricted "Ca(2+) spark"-like events, events in RyR3-expressing myotubes were larger in amplitude and duration compared with those in RyR1. Thus, in this skeletal muscle context, differences exist in the spatiotemporal properties and frequency of occurrence of spontaneous release events generated by RyR1 and RyR3. These differences underscore functional differences between the Ca(2+) release behavior of RyR1 and RyR3 in this homologous expression system.
Full Text
The Full Text of this article is available as a PDF (865.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Airey J. A., Beck C. F., Murakami K., Tanksley S. J., Deerinck T. J., Ellisman M. H., Sutko J. L. Identification and localization of two triad junctional foot protein isoforms in mature avian fast twitch skeletal muscle. J Biol Chem. 1990 Aug 25;265(24):14187–14194. [PubMed] [Google Scholar]
- Bertocchini F., Ovitt C. E., Conti A., Barone V., Schöler H. R., Bottinelli R., Reggiani C., Sorrentino V. Requirement for the ryanodine receptor type 3 for efficient contraction in neonatal skeletal muscles. EMBO J. 1997 Dec 1;16(23):6956–6963. doi: 10.1093/emboj/16.23.6956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhat M. B., Zhao J., Zang W., Balke C. W., Takeshima H., Wier W. G., Ma J. Caffeine-induced release of intracellular Ca2+ from Chinese hamster ovary cells expressing skeletal muscle ryanodine receptor. Effects on full-length and carboxyl-terminal portion of Ca2+ release channels. J Gen Physiol. 1997 Dec;110(6):749–762. doi: 10.1085/jgp.110.6.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Block B. A., Imagawa T., Campbell K. P., Franzini-Armstrong C. Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J Cell Biol. 1988 Dec;107(6 Pt 2):2587–2600. doi: 10.1083/jcb.107.6.2587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brum G., González A., Rengifo J., Shirokova N., Ríos E. Fast imaging in two dimensions resolves extensive sources of Ca2+ sparks in frog skeletal muscle. J Physiol. 2000 Nov 1;528(Pt 3):419–433. doi: 10.1111/j.1469-7793.2000.00419.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cannell M. B., Soeller C. Mechanisms underlying calcium sparks in cardiac muscle. J Gen Physiol. 1999 Mar;113(3):373–376. doi: 10.1085/jgp.113.3.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chandler W. K., Rakowski R. F., Schneider M. F. Effects of glycerol treatment and maintained depolarization on charge movement in skeletal muscle. J Physiol. 1976 Jan;254(2):285–316. doi: 10.1113/jphysiol.1976.sp011233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen S. R., Ebisawa K., Li X., Zhang L. Molecular identification of the ryanodine receptor Ca2+ sensor. J Biol Chem. 1998 Jun 12;273(24):14675–14678. doi: 10.1074/jbc.273.24.14675. [DOI] [PubMed] [Google Scholar]
- Cheng H., Lederer W. J., Cannell M. B. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science. 1993 Oct 29;262(5134):740–744. doi: 10.1126/science.8235594. [DOI] [PubMed] [Google Scholar]
- Cheng H., Song L. S., Shirokova N., González A., Lakatta E. G., Ríos E., Stern M. D. Amplitude distribution of calcium sparks in confocal images: theory and studies with an automatic detection method. Biophys J. 1999 Feb;76(2):606–617. doi: 10.1016/S0006-3495(99)77229-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conklin M. W., Ahern C. A., Vallejo P., Sorrentino V., Takeshima H., Coronado R. Comparison of Ca(2+) sparks produced independently by two ryanodine receptor isoforms (type 1 or type 3). Biophys J. 2000 Apr;78(4):1777–1785. doi: 10.1016/S0006-3495(00)76728-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conklin M. W., Barone V., Sorrentino V., Coronado R. Contribution of ryanodine receptor type 3 to Ca(2+) sparks in embryonic mouse skeletal muscle. Biophys J. 1999 Sep;77(3):1394–1403. doi: 10.1016/S0006-3495(99)76988-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conklin M. W., Powers P., Gregg R. G., Coronado R. Ca2+ sparks in embryonic mouse skeletal muscle selectively deficient in dihydropyridine receptor alpha1S or beta1a subunits. Biophys J. 1999 Feb;76(2):657–669. doi: 10.1016/S0006-3495(99)77233-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conti A., Gorza L., Sorrentino V. Differential distribution of ryanodine receptor type 3 (RyR3) gene product in mammalian skeletal muscles. Biochem J. 1996 May 15;316(Pt 1):19–23. doi: 10.1042/bj3160019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Csernoch L., Jacquemond V., Schneider M. F. Microinjection of strong calcium buffers suppresses the peak of calcium release during depolarization in frog skeletal muscle fibers. J Gen Physiol. 1993 Feb;101(2):297–333. doi: 10.1085/jgp.101.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fessenden J. D., Wang Y., Moore R. A., Chen S. R., Allen P. D., Pessah I. N. Divergent functional properties of ryanodine receptor types 1 and 3 expressed in a myogenic cell line. Biophys J. 2000 Nov;79(5):2509–2525. doi: 10.1016/S0006-3495(00)76492-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flucher B. E., Conti A., Takeshima H., Sorrentino V. Type 3 and type 1 ryanodine receptors are localized in triads of the same mammalian skeletal muscle fibers. J Cell Biol. 1999 Aug 9;146(3):621–630. doi: 10.1083/jcb.146.3.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fraefel C., Song S., Lim F., Lang P., Yu L., Wang Y., Wild P., Geller A. I. Helper virus-free transfer of herpes simplex virus type 1 plasmid vectors into neural cells. J Virol. 1996 Oct;70(10):7190–7197. doi: 10.1128/jvi.70.10.7190-7197.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klein M. G., Cheng H., Santana L. F., Jiang Y. H., Lederer W. J., Schneider M. F. Two mechanisms of quantized calcium release in skeletal muscle. Nature. 1996 Feb 1;379(6564):455–458. doi: 10.1038/379455a0. [DOI] [PubMed] [Google Scholar]
- Lorenzon P., Grohovaz F., Ruzzier F. Voltage- and ligand-gated ryanodine receptors are functionally separated in developing C2C12 mouse myotubes. J Physiol. 2000 Jun 1;525(Pt 2):499–507. doi: 10.1111/j.1469-7793.2000.00499.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meissner G. Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu Rev Physiol. 1994;56:485–508. doi: 10.1146/annurev.ph.56.030194.002413. [DOI] [PubMed] [Google Scholar]
- Moore R. A., Nguyen H., Galceran J., Pessah I. N., Allen P. D. A transgenic myogenic cell line lacking ryanodine receptor protein for homologous expression studies: reconstitution of Ry1R protein and function. J Cell Biol. 1998 Feb 23;140(4):843–851. doi: 10.1083/jcb.140.4.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murayama T., Oba T., Katayama E., Oyamada H., Oguchi K., Kobayashi M., Otsuka K., Ogawa Y. Further characterization of the type 3 ryanodine receptor (RyR3) purified from rabbit diaphragm. J Biol Chem. 1999 Jun 11;274(24):17297–17308. doi: 10.1074/jbc.274.24.17297. [DOI] [PubMed] [Google Scholar]
- Nakai J., Dirksen R. T., Nguyen H. T., Pessah I. N., Beam K. G., Allen P. D. Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor. Nature. 1996 Mar 7;380(6569):72–75. doi: 10.1038/380072a0. [DOI] [PubMed] [Google Scholar]
- Protasi F., Franzini-Armstrong C., Allen P. D. Role of ryanodine receptors in the assembly of calcium release units in skeletal muscle. J Cell Biol. 1998 Feb 23;140(4):831–842. doi: 10.1083/jcb.140.4.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Protasi F., Franzini-Armstrong C., Flucher B. E. Coordinated incorporation of skeletal muscle dihydropyridine receptors and ryanodine receptors in peripheral couplings of BC3H1 cells. J Cell Biol. 1997 May 19;137(4):859–870. doi: 10.1083/jcb.137.4.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Protasi F., Takekura H., Wang Y., Chen S. R., Meissner G., Allen P. D., Franzini-Armstrong C. RYR1 and RYR3 have different roles in the assembly of calcium release units of skeletal muscle. Biophys J. 2000 Nov;79(5):2494–2508. doi: 10.1016/S0006-3495(00)76491-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rios E., Brum G. Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature. 1987 Feb 19;325(6106):717–720. doi: 10.1038/325717a0. [DOI] [PubMed] [Google Scholar]
- Schneider M. F. Ca2+ sparks in frog skeletal muscle: generation by one, some, or many SR Ca2+ release channels? J Gen Physiol. 1999 Mar;113(3):365–372. doi: 10.1085/jgp.113.3.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider M. F., Chandler W. K. Voltage dependent charge movement of skeletal muscle: a possible step in excitation-contraction coupling. Nature. 1973 Mar 23;242(5395):244–246. doi: 10.1038/242244a0. [DOI] [PubMed] [Google Scholar]
- Shirokova N., García J., Ríos E. Local calcium release in mammalian skeletal muscle. J Physiol. 1998 Oct 15;512(Pt 2):377–384. doi: 10.1111/j.1469-7793.1998.377be.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shirokova N., González A., Kirsch W. G., Ríos E., Pizarro G., Stern M. D., Cheng H. Calcium sparks: release packets of uncertain origin and fundamental role. J Gen Physiol. 1999 Mar;113(3):377–384. doi: 10.1085/jgp.113.3.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shirokova N., Shirokov R., Rossi D., González A., Kirsch W. G., García J., Sorrentino V., Ríos E. Spatially segregated control of Ca2+ release in developing skeletal muscle of mice. J Physiol. 1999 Dec 1;521(Pt 2):483–495. doi: 10.1111/j.1469-7793.1999.00483.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shtifman A., Ward C. W., Wang J., Valdivia H. H., Schneider M. F. Effects of imperatoxin A on local sarcoplasmic reticulum Ca(2+) release in frog skeletal muscle. Biophys J. 2000 Aug;79(2):814–827. doi: 10.1016/S0006-3495(00)76338-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sonnleitner A., Conti A., Bertocchini F., Schindler H., Sorrentino V. Functional properties of the ryanodine receptor type 3 (RyR3) Ca2+ release channel. EMBO J. 1998 May 15;17(10):2790–2798. doi: 10.1093/emboj/17.10.2790. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sutko J. L., Airey J. A. Ryanodine receptor Ca2+ release channels: does diversity in form equal diversity in function? Physiol Rev. 1996 Oct;76(4):1027–1071. doi: 10.1152/physrev.1996.76.4.1027. [DOI] [PubMed] [Google Scholar]
- Tsugorka A., Ríos E., Blatter L. A. Imaging elementary events of calcium release in skeletal muscle cells. Science. 1995 Sep 22;269(5231):1723–1726. doi: 10.1126/science.7569901. [DOI] [PubMed] [Google Scholar]
- Wang Y., Fraefel C., Protasi F., Moore R. A., Fessenden J. D., Pessah I. N., DiFrancesco A., Breakefield X., Allen P. D. HSV-1 amplicon vectors are a highly efficient gene delivery system for skeletal muscle myoblasts and myotubes. Am J Physiol Cell Physiol. 2000 Mar;278(3):C619–C626. doi: 10.1152/ajpcell.2000.278.3.C619. [DOI] [PubMed] [Google Scholar]
- Ward C. W., Schneider M. F., Castillo D., Protasi F., Wang Y., Chen S. R., Allen P. D. Expression of ryanodine receptor RyR3 produces Ca2+ sparks in dyspedic myotubes. J Physiol. 2000 May 15;525(Pt 1):91–103. doi: 10.1111/j.1469-7793.2000.t01-2-00091.x. [DOI] [PMC free article] [PubMed] [Google Scholar]