Abstract
Certain specific point mutations within the transmembrane domains of class I receptor tyrosine kinases are known to induce altered behavior in the host cell. An internally controlled pair of peptides containing the transmembrane portion of the human epidermal growth factor (EGF) receptor (ErbB-1) was examined in fluid, fully hydrated lipid bilayers by wide-line 2H-NMR for insight into the physical basis of this effect. One member of the pair encompassed the native transmembrane sequence from ErbB-1, while in the other the valine residue at position 627 was replaced by glutamic acid to mimic a substitution that produces a transformed phenotype in cells. Heteronuclear probes having a defined relationship to the peptide backbone were incorporated by deuteration of the methyl side chains of natural alanine residues. 2H-NMR spectra were recorded in the range 35 degrees C to 65 degrees C in membranes composed of 1-palmitoyl-2-oleoyl phosphatidylcholine. Narrowed spectral components arising from species rotating rapidly and symmetrically within the membrane persisted to very high temperature and appeared to represent monomeric peptide. Probes at positions 623 and 629 within the EGF receptor displayed changes in quadrupole splitting when Val(627) was replaced by Glu, while probes downstream at position 637 were relatively unaffected. The results demonstrate a measurable spatial reorientation in the region of the 5-amino acid motif (residues 624-628) often suggested to be involved in side-to-side interactions of the receptor transmembrane domain. Spectral changes induced by the Val-->Glu mutation in ErbB-1 were smaller than those induced by the analogous oncogenic mutation in the homologous human receptor, ErbB-2 (Sharpe, S., K. R. Barber, and C. W. M. Grant. 2000. Biochemistry. 39:6572-6580). Quadrupole splittings at probe sites examined were only modestly sensitive to temperature, suggesting that each transmembrane peptide behaved as a motionally ordered unit possessing considerable conformational stability.
Full Text
The Full Text of this article is available as a PDF (147.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brandt-Rauf P. W., Monaco R., Pincus M. R. Conformation of the transmembrane domain of the epidermal growth factor receptor. J Protein Chem. 1994 Feb;13(2):227–231. doi: 10.1007/BF01891980. [DOI] [PubMed] [Google Scholar]
- Brandt-Rauf P. W., Pincus M. R., Monaco R. Conformation of the transmembrane domain of the c-erbB-2 oncogene-encoded protein in its monomeric and dimeric states. J Protein Chem. 1995 Jan;14(1):33–40. doi: 10.1007/BF01902842. [DOI] [PubMed] [Google Scholar]
- Brosig B., Langosch D. The dimerization motif of the glycophorin A transmembrane segment in membranes: importance of glycine residues. Protein Sci. 1998 Apr;7(4):1052–1056. doi: 10.1002/pro.5560070423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Byström T., Strandberg E., Kovacs F. A., Cross T. A., Lindblom G. Influence of transmembrane peptides on bilayers of phosphatidylcholines with different acyl chain lengths studied by solid-state NMR. Biochim Biophys Acta. 2000 Dec 20;1509(1-2):335–345. doi: 10.1016/s0005-2736(00)00316-3. [DOI] [PubMed] [Google Scholar]
- Davis P. J., Keough K. M. Chain arrangements in the gel state and the transition temperatures of phosphatidylcholines. Biophys J. 1985 Dec;48(6):915–918. doi: 10.1016/S0006-3495(85)83854-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duneau J. P., Garnier N., Genest M. Insight into signal transduction: structural alterations in transmembrane helices probed by multi-1 ns molecular dynamics simulations. J Biomol Struct Dyn. 1997 Dec;15(3):555–572. doi: 10.1080/07391102.1997.10508966. [DOI] [PubMed] [Google Scholar]
- Gullick W. J., Bottomley A. C., Lofts F. J., Doak D. G., Mulvey D., Newman R., Crumpton M. J., Sternberg M. J., Campbell I. D. Three dimensional structure of the transmembrane region of the proto-oncogenic and oncogenic forms of the neu protein. EMBO J. 1992 Jan;11(1):43–48. doi: 10.1002/j.1460-2075.1992.tb05025.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones D. H., Barber K. R., Grant C. W. Sequence-related behaviour of transmembrane domains from class I receptor tyrosine kinases. Biochim Biophys Acta. 1998 May 28;1371(2):199–212. doi: 10.1016/s0005-2736(98)00015-7. [DOI] [PubMed] [Google Scholar]
- Jones D. H., Barber K. R., VanDerLoo E. W., Grant C. W. Epidermal growth factor receptor transmembrane domain: 2H NMR implications for orientation and motion in a bilayer environment. Biochemistry. 1998 Nov 24;37(47):16780–16787. doi: 10.1021/bi981520y. [DOI] [PubMed] [Google Scholar]
- Koeppe R. E., 2nd, Killian J. A., Greathouse D. V. Orientations of the tryptophan 9 and 11 side chains of the gramicidin channel based on deuterium nuclear magnetic resonance spectroscopy. Biophys J. 1994 Jan;66(1):14–24. doi: 10.1016/S0006-3495(94)80748-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee K. C., Huo S., Cross T. A. Lipid-peptide interface: valine conformation and dynamics in the gramicidin channel. Biochemistry. 1995 Jan 24;34(3):857–867. doi: 10.1021/bi00003a020. [DOI] [PubMed] [Google Scholar]
- Marassi F. M., Ramamoorthy A., Opella S. J. Complete resolution of the solid-state NMR spectrum of a uniformly 15N-labeled membrane protein in phospholipid bilayers. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8551–8556. doi: 10.1073/pnas.94.16.8551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miloso M., Mazzotti M., Vass W. C., Beguinot L. SHC and GRB-2 are constitutively by an epidermal growth factor receptor with a point mutation in the transmembrane domain. J Biol Chem. 1995 Aug 18;270(33):19557–19562. doi: 10.1074/jbc.270.33.19557. [DOI] [PubMed] [Google Scholar]
- Prosser R. S., Daleman S. I., Davis J. H. The structure of an integral membrane peptide: a deuterium NMR study of gramicidin. Biophys J. 1994 May;66(5):1415–1428. doi: 10.1016/S0006-3495(94)80932-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ptak M., Egret-Charlier M., Sanson A., Bouloussa O. A NMR study of the ionization of fatty acids, fatty amines and N-acylamino acids incorporated in phosphatidylcholine vesicles. Biochim Biophys Acta. 1980 Aug 4;600(2):387–397. doi: 10.1016/0005-2736(80)90442-3. [DOI] [PubMed] [Google Scholar]
- Rigby A. C., Barber K. R., Shaw G. S., Grant C. W. Transmembrane region of the epidermal growth factor receptor: behavior and interactions via 2H NMR. Biochemistry. 1996 Sep 24;35(38):12591–12601. doi: 10.1021/bi9611063. [DOI] [PubMed] [Google Scholar]
- Rost B. PHD: predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol. 1996;266:525–539. doi: 10.1016/s0076-6879(96)66033-9. [DOI] [PubMed] [Google Scholar]
- Seelig J. Deuterium magnetic resonance: theory and application to lipid membranes. Q Rev Biophys. 1977 Aug;10(3):353–418. doi: 10.1017/s0033583500002948. [DOI] [PubMed] [Google Scholar]
- Sharpe S., Barber K. R., Grant C. W. Val(659)-->Glu mutation within the transmembrane domain of ErbB-2: effects measured by (2)H NMR in fluid phospholipid bilayers. Biochemistry. 2000 May 30;39(21):6572–6580. doi: 10.1021/bi000038o. [DOI] [PubMed] [Google Scholar]
- Smith S. O., Smith C. S., Bormann B. J. Strong hydrogen bonding interactions involving a buried glutamic acid in the transmembrane sequence of the neu/erbB-2 receptor. Nat Struct Biol. 1996 Mar;3(3):252–258. doi: 10.1038/nsb0396-252. [DOI] [PubMed] [Google Scholar]
- Sternberg M. J., Gullick W. J. A sequence motif in the transmembrane region of growth factor receptors with tyrosine kinase activity mediates dimerization. Protein Eng. 1990 Mar;3(4):245–248. doi: 10.1093/protein/3.4.245. [DOI] [PubMed] [Google Scholar]
- White S. H., Wimley W. C. Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct. 1999;28:319–365. doi: 10.1146/annurev.biophys.28.1.319. [DOI] [PubMed] [Google Scholar]
- van der Geer P., Hunter T., Lindberg R. A. Receptor protein-tyrosine kinases and their signal transduction pathways. Annu Rev Cell Biol. 1994;10:251–337. doi: 10.1146/annurev.cb.10.110194.001343. [DOI] [PubMed] [Google Scholar]