Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Dec;81(6):3275–3284. doi: 10.1016/S0006-3495(01)75961-9

Transport properties of the calcium ionophore ETH-129.

E Wang 1, W L Erdahl 1, S A Hamidinia 1, C J Chapman 1, R W Taylor 1, D R Pfeiffer 1
PMCID: PMC1301785  PMID: 11720991

Abstract

The transport mechanism and specificities of ionophore ETH-29 have been investigated in a highly defined phospholipid vesicle system, with the goal of facilitating the application of this compound to biological problems. ETH-129 transports Ca(2+) via an electrogenic mechanism, in contrast to A23187 and ionomycin, which function in a charge neutral manner. The rate of transport is a function of membrane potential, increasing by 3.9-fold per 59 mV over a broad range of that parameter. Rate is independent of the transmembrane pH gradient and strongly stimulated by the uncoupler carbonyl cyanide m-chlorophenylhydrazone when no external potential has been applied. The effect of uncoupler reflects the collapse of an opposing potential arising during Ca(2+) transport, but also reflects the formation of a mixed complex between the uncoupler, ETH-129, and Ca(2+) that readily permeates the vesicle membrane. Oleate does not substitute for the uncoupler in either regard. ETH-129 transports polyvalent cations according to the selectivity sequence La(3+) > Ca(2+) > Zn(2+) approximately equal to Sr(2+) > Co(2+) approximately equal to Ni(2+) approximately equal to Mn(2+), with the magnitude of the selectivity coefficients reflecting the cation concentration range considered. There is little or no activity for the transport of Na(+), K(+), and Mg(2+). These properties suggest that ETH-129 will be useful for investigating the consequences of a mitochondrial Ca(2+) overload in mammalian cells, which is difficult to pursue through the application of electroneutral ionophores.

Full Text

The Full Text of this article is available as a PDF (226.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  2. Brierley G. P., Baysal K., Jung D. W. Cation transport systems in mitochondria: Na+ and K+ uniports and exchangers. J Bioenerg Biomembr. 1994 Oct;26(5):519–526. doi: 10.1007/BF00762736. [DOI] [PubMed] [Google Scholar]
  3. Broekemeier K. M., Klocek C. K., Pfeiffer D. R. Proton selective substate of the mitochondrial permeability transition pore: regulation by the redox state of the electron transport chain. Biochemistry. 1998 Sep 22;37(38):13059–13065. doi: 10.1021/bi980820c. [DOI] [PubMed] [Google Scholar]
  4. Caroni P., Gazzotti P., Vuilleumier P., Simon W., Carafoli E. Ca2+ transport mediated by a synthetic neutral Ca2+ -ionophore in biological membranes. Biochim Biophys Acta. 1977 Nov 1;470(3):437–445. doi: 10.1016/0005-2736(77)90134-1. [DOI] [PubMed] [Google Scholar]
  5. Chapman C. J., Erdahl W. E., Taylor R. W., Pfeiffer D. R. Effects of solute concentration on the entrapment of solutes in phospholipid vesicles prepared by freeze-thaw extrusion. Chem Phys Lipids. 1991 Dec;60(2):201–208. doi: 10.1016/0009-3084(91)90042-a. [DOI] [PubMed] [Google Scholar]
  6. Chapman C. J., Erdahl W. L., Taylor R. W., Pfeiffer D. R. Factors affecting solute entrapment in phospholipid vesicles prepared by the freeze-thaw extrusion method: a possible general method for improving the efficiency of entrapment. Chem Phys Lipids. 1990 Aug;55(2):73–83. doi: 10.1016/0009-3084(90)90068-3. [DOI] [PubMed] [Google Scholar]
  7. Erdahl W. L., Chapman C. J., Taylor R. W., Pfeiffer D. R. Ca2+ transport properties of ionophores A23187, ionomycin, and 4-BrA23187 in a well defined model system. Biophys J. 1994 May;66(5):1678–1693. doi: 10.1016/S0006-3495(94)80959-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Erdahl W. L., Chapman C. J., Taylor R. W., Pfeiffer D. R. Effects of pH conditions on Ca2+ transport catalyzed by ionophores A23187, 4-BrA23187, and ionomycin suggest problems with common applications of these compounds in biological systems. Biophys J. 1995 Dec;69(6):2350–2363. doi: 10.1016/S0006-3495(95)80104-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Erdahl W. L., Chapman C. J., Taylor R. W., Pfeiffer D. R. Ionomycin, a carboxylic acid ionophore, transports Pb(2+) with high selectivity. J Biol Chem. 2000 Mar 10;275(10):7071–7079. doi: 10.1074/jbc.275.10.7071. [DOI] [PubMed] [Google Scholar]
  10. Erdahl W. L., Chapman C. J., Wang E., Taylor R. W., Pfeiffer D. R. Ionophore 4-BrA23187 transports Zn2+ and Mn2+ with high selectivity over Ca2+. Biochemistry. 1996 Oct 29;35(43):13817–13825. doi: 10.1021/bi961391q. [DOI] [PubMed] [Google Scholar]
  11. Fry D. W., White J. C., Goldman I. D. Rapid separation of low molecular weight solutes from liposomes without dilution. Anal Biochem. 1978 Oct 15;90(2):809–815. doi: 10.1016/0003-2697(78)90172-0. [DOI] [PubMed] [Google Scholar]
  12. Ginsburg H., Stark G. Facilitated transport of di- and trinitrophenolate ions across lipid membranes by valinomycin and nonactin. Biochim Biophys Acta. 1976 Dec 14;455(3):685–700. doi: 10.1016/0005-2736(76)90041-9. [DOI] [PubMed] [Google Scholar]
  13. Gunter T. E., Pfeiffer D. R. Mechanisms by which mitochondria transport calcium. Am J Physiol. 1990 May;258(5 Pt 1):C755–C786. doi: 10.1152/ajpcell.1990.258.5.C755. [DOI] [PubMed] [Google Scholar]
  14. Jung D. W., Bradshaw P. C., Pfeiffer D. R. Properties of a cyclosporin-insensitive permeability transition pore in yeast mitochondria. J Biol Chem. 1997 Aug 22;272(34):21104–21112. doi: 10.1074/jbc.272.34.21104. [DOI] [PubMed] [Google Scholar]
  15. Prabhananda B. S., Kombrabail M. H. Evidence for dimer participation and evidence against channel mechanism in A23187-mediated monovalent metal ion transport across phospholipid vesicular membrane. Biophys J. 1998 Oct;75(4):1749–1758. doi: 10.1016/S0006-3495(98)77616-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Prestipino G., Falugi C., Falchetto R., Gazzotti P. The ionophore ETH 129 as Ca2+ translocator in artificial and natural membranes. Anal Biochem. 1993 Apr;210(1):119–122. doi: 10.1006/abio.1993.1160. [DOI] [PubMed] [Google Scholar]
  17. Sorgato M. C., Moran O. Channels in mitochondrial membranes: knowns, unknowns, and prospects for the future. Crit Rev Biochem Mol Biol. 1993;28(2):127–171. doi: 10.3109/10409239309086793. [DOI] [PubMed] [Google Scholar]
  18. Stark G. Negative hydrophobic ions as transport-mediators for positive ions: evidence for a carrier mechanism. Biochim Biophys Acta. 1980 Jul 16;600(1):233–237. doi: 10.1016/0005-2736(80)90428-9. [DOI] [PubMed] [Google Scholar]
  19. Thomas T. P., Wang E., Pfeiffer D. R., Taylor R. W. Evidence against formation of A23187 dimers and oligomers in solution: photo-induced degradation of Ionophore A23187. Arch Biochem Biophys. 1997 Jun 15;342(2):351–361. doi: 10.1006/abbi.1997.0121. [DOI] [PubMed] [Google Scholar]
  20. Vuilleumier P., Gazzotti P., Carafoli E., Simon W. The translocation of Ca2+ across phospholipid bilayers induced by a synthetic neutral Ca2+ -ionophore. Biochim Biophys Acta. 1977 May 16;467(1):12–18. doi: 10.1016/0005-2736(77)90237-1. [DOI] [PubMed] [Google Scholar]
  21. Wang E., Taylor R. W., Pfeiffer D. R. Mechanism and specificity of lanthanide series cation transport by ionophores A23187, 4-BrA23187, and ionomycin. Biophys J. 1998 Sep;75(3):1244–1254. doi: 10.1016/S0006-3495(98)74044-5. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES