Abstract
The transport mechanism and specificities of ionophore ETH-29 have been investigated in a highly defined phospholipid vesicle system, with the goal of facilitating the application of this compound to biological problems. ETH-129 transports Ca(2+) via an electrogenic mechanism, in contrast to A23187 and ionomycin, which function in a charge neutral manner. The rate of transport is a function of membrane potential, increasing by 3.9-fold per 59 mV over a broad range of that parameter. Rate is independent of the transmembrane pH gradient and strongly stimulated by the uncoupler carbonyl cyanide m-chlorophenylhydrazone when no external potential has been applied. The effect of uncoupler reflects the collapse of an opposing potential arising during Ca(2+) transport, but also reflects the formation of a mixed complex between the uncoupler, ETH-129, and Ca(2+) that readily permeates the vesicle membrane. Oleate does not substitute for the uncoupler in either regard. ETH-129 transports polyvalent cations according to the selectivity sequence La(3+) > Ca(2+) > Zn(2+) approximately equal to Sr(2+) > Co(2+) approximately equal to Ni(2+) approximately equal to Mn(2+), with the magnitude of the selectivity coefficients reflecting the cation concentration range considered. There is little or no activity for the transport of Na(+), K(+), and Mg(2+). These properties suggest that ETH-129 will be useful for investigating the consequences of a mitochondrial Ca(2+) overload in mammalian cells, which is difficult to pursue through the application of electroneutral ionophores.
Full Text
The Full Text of this article is available as a PDF (226.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
- Brierley G. P., Baysal K., Jung D. W. Cation transport systems in mitochondria: Na+ and K+ uniports and exchangers. J Bioenerg Biomembr. 1994 Oct;26(5):519–526. doi: 10.1007/BF00762736. [DOI] [PubMed] [Google Scholar]
- Broekemeier K. M., Klocek C. K., Pfeiffer D. R. Proton selective substate of the mitochondrial permeability transition pore: regulation by the redox state of the electron transport chain. Biochemistry. 1998 Sep 22;37(38):13059–13065. doi: 10.1021/bi980820c. [DOI] [PubMed] [Google Scholar]
- Caroni P., Gazzotti P., Vuilleumier P., Simon W., Carafoli E. Ca2+ transport mediated by a synthetic neutral Ca2+ -ionophore in biological membranes. Biochim Biophys Acta. 1977 Nov 1;470(3):437–445. doi: 10.1016/0005-2736(77)90134-1. [DOI] [PubMed] [Google Scholar]
- Chapman C. J., Erdahl W. E., Taylor R. W., Pfeiffer D. R. Effects of solute concentration on the entrapment of solutes in phospholipid vesicles prepared by freeze-thaw extrusion. Chem Phys Lipids. 1991 Dec;60(2):201–208. doi: 10.1016/0009-3084(91)90042-a. [DOI] [PubMed] [Google Scholar]
- Chapman C. J., Erdahl W. L., Taylor R. W., Pfeiffer D. R. Factors affecting solute entrapment in phospholipid vesicles prepared by the freeze-thaw extrusion method: a possible general method for improving the efficiency of entrapment. Chem Phys Lipids. 1990 Aug;55(2):73–83. doi: 10.1016/0009-3084(90)90068-3. [DOI] [PubMed] [Google Scholar]
- Erdahl W. L., Chapman C. J., Taylor R. W., Pfeiffer D. R. Ca2+ transport properties of ionophores A23187, ionomycin, and 4-BrA23187 in a well defined model system. Biophys J. 1994 May;66(5):1678–1693. doi: 10.1016/S0006-3495(94)80959-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erdahl W. L., Chapman C. J., Taylor R. W., Pfeiffer D. R. Effects of pH conditions on Ca2+ transport catalyzed by ionophores A23187, 4-BrA23187, and ionomycin suggest problems with common applications of these compounds in biological systems. Biophys J. 1995 Dec;69(6):2350–2363. doi: 10.1016/S0006-3495(95)80104-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erdahl W. L., Chapman C. J., Taylor R. W., Pfeiffer D. R. Ionomycin, a carboxylic acid ionophore, transports Pb(2+) with high selectivity. J Biol Chem. 2000 Mar 10;275(10):7071–7079. doi: 10.1074/jbc.275.10.7071. [DOI] [PubMed] [Google Scholar]
- Erdahl W. L., Chapman C. J., Wang E., Taylor R. W., Pfeiffer D. R. Ionophore 4-BrA23187 transports Zn2+ and Mn2+ with high selectivity over Ca2+. Biochemistry. 1996 Oct 29;35(43):13817–13825. doi: 10.1021/bi961391q. [DOI] [PubMed] [Google Scholar]
- Fry D. W., White J. C., Goldman I. D. Rapid separation of low molecular weight solutes from liposomes without dilution. Anal Biochem. 1978 Oct 15;90(2):809–815. doi: 10.1016/0003-2697(78)90172-0. [DOI] [PubMed] [Google Scholar]
- Ginsburg H., Stark G. Facilitated transport of di- and trinitrophenolate ions across lipid membranes by valinomycin and nonactin. Biochim Biophys Acta. 1976 Dec 14;455(3):685–700. doi: 10.1016/0005-2736(76)90041-9. [DOI] [PubMed] [Google Scholar]
- Gunter T. E., Pfeiffer D. R. Mechanisms by which mitochondria transport calcium. Am J Physiol. 1990 May;258(5 Pt 1):C755–C786. doi: 10.1152/ajpcell.1990.258.5.C755. [DOI] [PubMed] [Google Scholar]
- Jung D. W., Bradshaw P. C., Pfeiffer D. R. Properties of a cyclosporin-insensitive permeability transition pore in yeast mitochondria. J Biol Chem. 1997 Aug 22;272(34):21104–21112. doi: 10.1074/jbc.272.34.21104. [DOI] [PubMed] [Google Scholar]
- Prabhananda B. S., Kombrabail M. H. Evidence for dimer participation and evidence against channel mechanism in A23187-mediated monovalent metal ion transport across phospholipid vesicular membrane. Biophys J. 1998 Oct;75(4):1749–1758. doi: 10.1016/S0006-3495(98)77616-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prestipino G., Falugi C., Falchetto R., Gazzotti P. The ionophore ETH 129 as Ca2+ translocator in artificial and natural membranes. Anal Biochem. 1993 Apr;210(1):119–122. doi: 10.1006/abio.1993.1160. [DOI] [PubMed] [Google Scholar]
- Sorgato M. C., Moran O. Channels in mitochondrial membranes: knowns, unknowns, and prospects for the future. Crit Rev Biochem Mol Biol. 1993;28(2):127–171. doi: 10.3109/10409239309086793. [DOI] [PubMed] [Google Scholar]
- Stark G. Negative hydrophobic ions as transport-mediators for positive ions: evidence for a carrier mechanism. Biochim Biophys Acta. 1980 Jul 16;600(1):233–237. doi: 10.1016/0005-2736(80)90428-9. [DOI] [PubMed] [Google Scholar]
- Thomas T. P., Wang E., Pfeiffer D. R., Taylor R. W. Evidence against formation of A23187 dimers and oligomers in solution: photo-induced degradation of Ionophore A23187. Arch Biochem Biophys. 1997 Jun 15;342(2):351–361. doi: 10.1006/abbi.1997.0121. [DOI] [PubMed] [Google Scholar]
- Vuilleumier P., Gazzotti P., Carafoli E., Simon W. The translocation of Ca2+ across phospholipid bilayers induced by a synthetic neutral Ca2+ -ionophore. Biochim Biophys Acta. 1977 May 16;467(1):12–18. doi: 10.1016/0005-2736(77)90237-1. [DOI] [PubMed] [Google Scholar]
- Wang E., Taylor R. W., Pfeiffer D. R. Mechanism and specificity of lanthanide series cation transport by ionophores A23187, 4-BrA23187, and ionomycin. Biophys J. 1998 Sep;75(3):1244–1254. doi: 10.1016/S0006-3495(98)74044-5. [DOI] [PMC free article] [PubMed] [Google Scholar]