Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Dec;81(6):3285–3293. doi: 10.1016/S0006-3495(01)75962-0

Rhodopsin-transducin interface: studies with conformationally constrained peptides.

R Arimoto 1, O G Kisselev 1, G M Makara 1, G R Marshall 1
PMCID: PMC1301786  PMID: 11720992

Abstract

To probe the interaction between transducin (G(t)) and photoactivated rhodopsin (R*), 14 analog peptides were designed and synthesized restricting the backbone of the R*-bound structure of the C-terminal 11 residues of G(t)alpha derived by transferred nuclear Overhauser effect (TrNOE) NMR. Most of the analogs were able to bind R*, supporting the TrNOE structure. Improved affinities of constrained peptides indicated that preorganization of the bound conformation is beneficial. Cys347 was found to be a recognition site; particularly, the free sulfhydryl of the side chain seems to be critical for R* binding. Leu349 was another invariable residue. Both Ile and tert-leucine (Tle) mutations for Leu349 significantly reduced the activity, indicating that the Leu side chain is in intimate contact with R*. The structure of R* was computer generated by moving helix 6 from its position in the crystal structure of ground-state rhodopsin (R) based on various experimental data. Seven feasible complexes were found when docking the TrNOE structure with R* and none with R. The analog peptides were modeled into the complexes, and their binding affinities were calculated. The predicted affinities were compared with the measured affinities to evaluate the modeled structures. Three models of the R*/G(t)alpha complex showed strong correlation to the experimental data.

Full Text

The Full Text of this article is available as a PDF (303.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdulaev N. G., Ridge K. D. Light-induced exposure of the cytoplasmic end of transmembrane helix seven in rhodopsin. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):12854–12859. doi: 10.1073/pnas.95.22.12854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Acharya S., Saad Y., Karnik S. S. Transducin-alpha C-terminal peptide binding site consists of C-D and E-F loops of rhodopsin. J Biol Chem. 1997 Mar 7;272(10):6519–6524. doi: 10.1074/jbc.272.10.6519. [DOI] [PubMed] [Google Scholar]
  3. Aris L., Gilchrist A., Rens-Domiano S., Meyer C., Schatz P. J., Dratz E. A., Hamm H. E. Structural requirements for the stabilization of metarhodopsin II by the C terminus of the alpha subunit of transducin. J Biol Chem. 2000 Oct 3;276(4):2333–2339. doi: 10.1074/jbc.M002533200. [DOI] [PubMed] [Google Scholar]
  4. Borhan B., Souto M. L., Imai H., Shichida Y., Nakanishi K. Movement of retinal along the visual transduction path. Science. 2000 Jun 23;288(5474):2209–2212. doi: 10.1126/science.288.5474.2209. [DOI] [PubMed] [Google Scholar]
  5. Cai K., Itoh Y., Khorana H. G. Mapping of contact sites in complex formation between transducin and light-activated rhodopsin by covalent crosslinking: use of a photoactivatable reagent. Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):4877–4882. doi: 10.1073/pnas.051632898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coleman D. E., Sprang S. R. Crystal structures of the G protein Gi alpha 1 complexed with GDP and Mg2+: a crystallographic titration experiment. Biochemistry. 1998 Oct 13;37(41):14376–14385. doi: 10.1021/bi9810306. [DOI] [PubMed] [Google Scholar]
  7. Delmelle M., Virmaux N. Location of two sulfhydryl groups in the rhodopsin molecule by use of the spin label technique. Biochim Biophys Acta. 1977 Jan 21;464(2):370–377. doi: 10.1016/0005-2736(77)90011-6. [DOI] [PubMed] [Google Scholar]
  8. Dratz E. A., Furstenau J. E., Lambert C. G., Thireault D. L., Rarick H., Schepers T., Pakhlevaniants S., Hamm H. E. NMR structure of a receptor-bound G-protein peptide. Nature. 1993 May 20;363(6426):276–281. doi: 10.1038/363276a0. [DOI] [PubMed] [Google Scholar]
  9. Ernst O. P., Meyer C. K., Marin E. P., Henklein P., Fu W. Y., Sakmar T. P., Hofmann K. P. Mutation of the fourth cytoplasmic loop of rhodopsin affects binding of transducin and peptides derived from the carboxyl-terminal sequences of transducin alpha and gamma subunits. J Biol Chem. 2000 Jan 21;275(3):1937–1943. doi: 10.1074/jbc.275.3.1937. [DOI] [PubMed] [Google Scholar]
  10. Farahbakhsh Z. T., Ridge K. D., Khorana H. G., Hubbell W. L. Mapping light-dependent structural changes in the cytoplasmic loop connecting helices C and D in rhodopsin: a site-directed spin labeling study. Biochemistry. 1995 Jul 11;34(27):8812–8819. doi: 10.1021/bi00027a033. [DOI] [PubMed] [Google Scholar]
  11. Farrens D. L., Altenbach C., Yang K., Hubbell W. L., Khorana H. G. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science. 1996 Nov 1;274(5288):768–770. doi: 10.1126/science.274.5288.768. [DOI] [PubMed] [Google Scholar]
  12. Franke R. R., König B., Sakmar T. P., Khorana H. G., Hofmann K. P. Rhodopsin mutants that bind but fail to activate transducin. Science. 1990 Oct 5;250(4977):123–125. doi: 10.1126/science.2218504. [DOI] [PubMed] [Google Scholar]
  13. Gabb H. A., Jackson R. M., Sternberg M. J. Modelling protein docking using shape complementarity, electrostatics and biochemical information. J Mol Biol. 1997 Sep 12;272(1):106–120. doi: 10.1006/jmbi.1997.1203. [DOI] [PubMed] [Google Scholar]
  14. Galaktionov S., Nikiforovich G. V., Marshall G. R. Ab initio modeling of small, medium, and large loops in proteins. Biopolymers. 2001;60(2):153–168. doi: 10.1002/1097-0282(2001)60:2<153::AID-BIP1010>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  15. Goodsell D. S., Olson A. J. Automated docking of substrates to proteins by simulated annealing. Proteins. 1990;8(3):195–202. doi: 10.1002/prot.340080302. [DOI] [PubMed] [Google Scholar]
  16. Hamm H. E., Deretic D., Arendt A., Hargrave P. A., Koenig B., Hofmann K. P. Site of G protein binding to rhodopsin mapped with synthetic peptides from the alpha subunit. Science. 1988 Aug 12;241(4867):832–835. doi: 10.1126/science.3136547. [DOI] [PubMed] [Google Scholar]
  17. Hargrave P. A., Hamm H. E., Hofmann K. P. Interaction of rhodopsin with the G-protein, transducin. Bioessays. 1993 Jan;15(1):43–50. doi: 10.1002/bies.950150107. [DOI] [PubMed] [Google Scholar]
  18. Itoh Y., Cai K., Khorana H. G. Mapping of contact sites in complex formation between light-activated rhodopsin and transducin by covalent crosslinking: use of a chemically preactivated reagent. Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):4883–4887. doi: 10.1073/pnas.051632998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kisselev O. G., Kao J., Ponder J. W., Fann Y. C., Gautam N., Marshall G. R. Light-activated rhodopsin induces structural binding motif in G protein alpha subunit. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4270–4275. doi: 10.1073/pnas.95.8.4270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kisselev O. G., Meyer C. K., Heck M., Ernst O. P., Hofmann K. P. Signal transfer from rhodopsin to the G-protein: evidence for a two-site sequential fit mechanism. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):4898–4903. doi: 10.1073/pnas.96.9.4898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kisselev O., Ermolaeva M., Gautam N. Efficient interaction with a receptor requires a specific type of prenyl group on the G protein gamma subunit. J Biol Chem. 1995 Oct 27;270(43):25356–25358. doi: 10.1074/jbc.270.43.25356. [DOI] [PubMed] [Google Scholar]
  22. Koenig B. W., Mitchell D. C., König S., Grzesiek S., Litman B. J., Bax A. Measurement of dipolar couplings in a transducin peptide fragment weakly bound to oriented photo-activated rhodopsin. J Biomol NMR. 2000 Feb;16(2):121–125. doi: 10.1023/a:1008378523816. [DOI] [PubMed] [Google Scholar]
  23. Kolodziej S. A., Nikiforovich G. V., Skeean R., Lignon M. F., Martinez J., Marshall G. R. Ac-[3- and 4-alkylthioproline31]-CCK4 analogs: synthesis and implications for the CCK-B receptor-bound conformation. J Med Chem. 1995 Jan 6;38(1):137–149. doi: 10.1021/jm00001a019. [DOI] [PubMed] [Google Scholar]
  24. Lambright D. G., Sondek J., Bohm A., Skiba N. P., Hamm H. E., Sigler P. B. The 2.0 A crystal structure of a heterotrimeric G protein. Nature. 1996 Jan 25;379(6563):311–319. doi: 10.1038/379311a0. [DOI] [PubMed] [Google Scholar]
  25. Marin E. P., Krishna A. G., Zvyaga T. A., Isele J., Siebert F., Sakmar T. P. The amino terminus of the fourth cytoplasmic loop of rhodopsin modulates rhodopsin-transducin interaction. J Biol Chem. 2000 Jan 21;275(3):1930–1936. doi: 10.1074/jbc.275.3.1930. [DOI] [PubMed] [Google Scholar]
  26. Marshall G. R., Bosshard H. E. Angiotensin II. Studies on the biologically active conformation. Circ Res. 1972 Sep;31(9 Suppl):143–150. [PubMed] [Google Scholar]
  27. Martin E. L., Rens-Domiano S., Schatz P. J., Hamm H. E. Potent peptide analogues of a G protein receptor-binding region obtained with a combinatorial library. J Biol Chem. 1996 Jan 5;271(1):361–366. doi: 10.1074/jbc.271.1.361. [DOI] [PubMed] [Google Scholar]
  28. Miranda A., Lahrichi S. L., Gulyas J., Koerber S. C., Craig A. G., Corrigan A., Rivier C., Vale W., Rivier J. Constrained corticotropin-releasing factor antagonists with i-(i + 3) Glu-Lys bridges. J Med Chem. 1997 Oct 24;40(22):3651–3658. doi: 10.1021/jm970311t. [DOI] [PubMed] [Google Scholar]
  29. Osawa S., Weiss E. R. The effect of carboxyl-terminal mutagenesis of Gt alpha on rhodopsin and guanine nucleotide binding. J Biol Chem. 1995 Dec 29;270(52):31052–31058. doi: 10.1074/jbc.270.52.31052. [DOI] [PubMed] [Google Scholar]
  30. Palczewski K., Kumasaka T., Hori T., Behnke C. A., Motoshima H., Fox B. A., Le Trong I., Teller D. C., Okada T., Stenkamp R. E. Crystal structure of rhodopsin: A G protein-coupled receptor. Science. 2000 Aug 4;289(5480):739–745. doi: 10.1126/science.289.5480.739. [DOI] [PubMed] [Google Scholar]
  31. Papermaster D. S., Dreyer W. J. Rhodopsin content in the outer segment membranes of bovine and frog retinal rods. Biochemistry. 1974 May 21;13(11):2438–2444. doi: 10.1021/bi00708a031. [DOI] [PubMed] [Google Scholar]
  32. Phillips W. J., Cerione R. A. A C-terminal peptide of bovine rhodopsin binds to the transducin alpha-subunit and facilitates its activation. Biochem J. 1994 Apr 15;299(Pt 2):351–357. doi: 10.1042/bj2990351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Struthers M., Yu H., Oprian D. D. G protein-coupled receptor activation: analysis of a highly constrained, "straitjacketed" rhodopsin. Biochemistry. 2000 Jul 11;39(27):7938–7942. doi: 10.1021/bi000771f. [DOI] [PubMed] [Google Scholar]
  34. Takemoto D. J., Morrison D., Davis L. C., Takemoto L. J. C-terminal peptides of rhodopsin. Determination of the optimum sequence for recognition of retinal transducin. Biochem J. 1986 Apr 1;235(1):309–312. doi: 10.1042/bj2350309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tesmer J. J., Berman D. M., Gilman A. G., Sprang S. R. Structure of RGS4 bound to AlF4--activated G(i alpha1): stabilization of the transition state for GTP hydrolysis. Cell. 1997 Apr 18;89(2):251–261. doi: 10.1016/s0092-8674(00)80204-4. [DOI] [PubMed] [Google Scholar]
  36. Vakser I. A. Low-resolution docking: prediction of complexes for underdetermined structures. Biopolymers. 1996 Sep;39(3):455–464. doi: 10.1002/(SICI)1097-0282(199609)39:3%3C455::AID-BIP16%3E3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  37. Wall M. A., Coleman D. E., Lee E., Iñiguez-Lluhi J. A., Posner B. A., Gilman A. G., Sprang S. R. The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2. Cell. 1995 Dec 15;83(6):1047–1058. doi: 10.1016/0092-8674(95)90220-1. [DOI] [PubMed] [Google Scholar]
  38. Yamazaki A., Bartucca F., Ting A., Bitensky M. W. Reciprocal effects of an inhibitory factor on catalytic activity and noncatalytic cGMP binding sites of rod phosphodiesterase. Proc Natl Acad Sci U S A. 1982 Jun;79(12):3702–3706. doi: 10.1073/pnas.79.12.3702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yang K., Farrens D. L., Altenbach C., Farahbakhsh Z. T., Hubbell W. L., Khorana H. G. Structure and function in rhodopsin. Cysteines 65 and 316 are in proximity in a rhodopsin mutant as indicated by disulfide formation and interactions between attached spin labels. Biochemistry. 1996 Nov 12;35(45):14040–14046. doi: 10.1021/bi962113u. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES