Abstract
The association of L-type Ca(2+) channels to the secretory granules and its functional significance to secretion was investigated in mouse pancreatic B cells. Nonstationary fluctuation analysis showed that the B cell is equipped with <500 alpha1(C) L-type Ca(2+) channels, corresponding to a Ca(2+) channel density of 0.9 channels per microm(2). Analysis of the kinetics of exocytosis during voltage-clamp depolarizations revealed an early component that reached a peak rate of 1.1 pFs(-1) (approximately 650 granules/s) 25 ms after onset of the pulse and is completed within approximately 100 ms. This component represents a subset of approximately 60 granules situated in the immediate vicinity of the L-type Ca(2+) channels, corresponding to approximately 10% of the readily releasable pool of granules. Experiments involving photorelease of caged Ca(2+) revealed that the rate of exocytosis was half-maximal at a cytoplasmic Ca(2+) concentration of 17 microM, and concentrations >25 microM are required to attain the rate of exocytosis observed during voltage-clamp depolarizations. The rapid component of exocytosis was not affected by inclusion of millimolar concentrations of the Ca(2+) buffer EGTA but abolished by addition of exogenous L(C753-893), the 140 amino acids of the cytoplasmic loop connecting the 2(nd) and 3(rd) transmembrane region of the alpha1(C) L-type Ca(2+) channel, which has been proposed to tether the Ca(2+) channels to the secretory granules. In keeping with the idea that secretion is determined by Ca(2+) influx through individual Ca(2+) channels, exocytosis triggered by brief (15 ms) depolarizations was enhanced 2.5-fold by the Ca(2+) channel agonist BayK8644 and 3.5-fold by elevating extracellular Ca(2+) from 2.6 to 10 mM. Recordings of single Ca(2+) channel activity revealed that patches predominantly contained no channels or many active channels. We propose that several Ca(2+) channels associate with a single granule thus forming a functional unit. This arrangement is important in a cell with few Ca(2+) channels as it ensures maximum usage of the Ca(2+) entering the cell while minimizing the influence of stochastic variations of the Ca(2+) channel activity.
Full Text
The Full Text of this article is available as a PDF (844.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adler E. M., Augustine G. J., Duffy S. N., Charlton M. P. Alien intracellular calcium chelators attenuate neurotransmitter release at the squid giant synapse. J Neurosci. 1991 Jun;11(6):1496–1507. doi: 10.1523/JNEUROSCI.11-06-01496.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ammälä C., Eliasson L., Bokvist K., Larsson O., Ashcroft F. M., Rorsman P. Exocytosis elicited by action potentials and voltage-clamp calcium currents in individual mouse pancreatic B-cells. J Physiol. 1993 Dec;472:665–688. doi: 10.1113/jphysiol.1993.sp019966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ashcroft F. M., Gribble F. M. ATP-sensitive K+ channels and insulin secretion: their role in health and disease. Diabetologia. 1999 Aug;42(8):903–919. doi: 10.1007/s001250051247. [DOI] [PubMed] [Google Scholar]
- Ashcroft F. M., Rorsman P. Electrophysiology of the pancreatic beta-cell. Prog Biophys Mol Biol. 1989;54(2):87–143. doi: 10.1016/0079-6107(89)90013-8. [DOI] [PubMed] [Google Scholar]
- Atlas D. Functional and physical coupling of voltage-sensitive calcium channels with exocytotic proteins: ramifications for the secretion mechanism. J Neurochem. 2001 May;77(4):972–985. doi: 10.1046/j.1471-4159.2001.00347.x. [DOI] [PubMed] [Google Scholar]
- Barg S., Galvanovskis J., Göpel S. O., Rorsman P., Eliasson L. Tight coupling between electrical activity and exocytosis in mouse glucagon-secreting alpha-cells. Diabetes. 2000 Sep;49(9):1500–1510. doi: 10.2337/diabetes.49.9.1500. [DOI] [PubMed] [Google Scholar]
- Barg S., Huang P., Eliasson L., Nelson D. J., Obermüller S., Rorsman P., Thévenod F., Renström E. Priming of insulin granules for exocytosis by granular Cl(-) uptake and acidification. J Cell Sci. 2001 Jun;114(Pt 11):2145–2154. doi: 10.1242/jcs.114.11.2145. [DOI] [PubMed] [Google Scholar]
- Bezprozvanny I., Scheller R. H., Tsien R. W. Functional impact of syntaxin on gating of N-type and Q-type calcium channels. Nature. 1995 Dec 7;378(6557):623–626. doi: 10.1038/378623a0. [DOI] [PubMed] [Google Scholar]
- Bokvist K., Holmqvist M., Gromada J., Rorsman P. Compound exocytosis in voltage-clamped mouse pancreatic beta-cells revealed by carbon fibre amperometry. Pflugers Arch. 2000 Mar;439(5):634–645. doi: 10.1007/s004249900211. [DOI] [PubMed] [Google Scholar]
- Catterall W. A. Interactions of presynaptic Ca2+ channels and snare proteins in neurotransmitter release. Ann N Y Acad Sci. 1999 Apr 30;868:144–159. doi: 10.1111/j.1749-6632.1999.tb11284.x. [DOI] [PubMed] [Google Scholar]
- Detimary P., Gilon P., Henquin J. C. Interplay between cytoplasmic Ca2+ and the ATP/ADP ratio: a feedback control mechanism in mouse pancreatic islets. Biochem J. 1998 Jul 15;333(Pt 2):269–274. doi: 10.1042/bj3330269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eliasson L., Proks P., Ammälä C., Ashcroft F. M., Bokvist K., Renström E., Rorsman P., Smith P. A. Endocytosis of secretory granules in mouse pancreatic beta-cells evoked by transient elevation of cytosolic calcium. J Physiol. 1996 Jun 15;493(Pt 3):755–767. doi: 10.1113/jphysiol.1996.sp021420. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fenwick E. M., Marty A., Neher E. Sodium and calcium channels in bovine chromaffin cells. J Physiol. 1982 Oct;331:599–635. doi: 10.1113/jphysiol.1982.sp014394. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gil A., Segura J., Pertusa J. A., Soria B. Monte carlo simulation of 3-D buffered Ca(2+) diffusion in neuroendocrine cells. Biophys J. 2000 Jan;78(1):13–33. doi: 10.1016/s0006-3495(00)76569-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gillis K. D., Misler S. Single cell assay of exocytosis from pancreatic islet B cells. Pflugers Arch. 1992 Jan;420(1):121–123. doi: 10.1007/BF00378654. [DOI] [PubMed] [Google Scholar]
- Gilon P., Yakel J., Gromada J., Zhu Y., Henquin J. C., Rorsman P. G protein-dependent inhibition of L-type Ca2+ currents by acetylcholine in mouse pancreatic B-cells. J Physiol. 1997 Feb 15;499(Pt 1):65–76. doi: 10.1113/jphysiol.1997.sp021911. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grapengiesser E., Gylfe E., Hellman B. Cyclic AMP as a determinant for glucose induction of fast Ca2+ oscillations in isolated pancreatic beta-cells. J Biol Chem. 1991 Jul 5;266(19):12207–12210. [PubMed] [Google Scholar]
- Gromada J., Høy M., Renström E., Bokvist K., Eliasson L., Göpel S., Rorsman P. CaM kinase II-dependent mobilization of secretory granules underlies acetylcholine-induced stimulation of exocytosis in mouse pancreatic B-cells. J Physiol. 1999 Aug 1;518(Pt 3):745–759. doi: 10.1111/j.1469-7793.1999.0745p.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Heinemann S. H., Conti F. Nonstationary noise analysis and application to patch clamp recordings. Methods Enzymol. 1992;207:131–148. doi: 10.1016/0076-6879(92)07009-d. [DOI] [PubMed] [Google Scholar]
- Horrigan F. T., Bookman R. J. Releasable pools and the kinetics of exocytosis in adrenal chromaffin cells. Neuron. 1994 Nov;13(5):1119–1129. doi: 10.1016/0896-6273(94)90050-7. [DOI] [PubMed] [Google Scholar]
- Klingauf J., Neher E. Modeling buffered Ca2+ diffusion near the membrane: implications for secretion in neuroendocrine cells. Biophys J. 1997 Feb;72(2 Pt 1):674–690. doi: 10.1016/s0006-3495(97)78704-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lang J. Molecular mechanisms and regulation of insulin exocytosis as a paradigm of endocrine secretion. Eur J Biochem. 1999 Jan;259(1-2):3–17. doi: 10.1046/j.1432-1327.1999.00043.x. [DOI] [PubMed] [Google Scholar]
- Maeda H., Ellis-Davies G. C., Ito K., Miyashita Y., Kasai H. Supralinear Ca2+ signaling by cooperative and mobile Ca2+ buffering in Purkinje neurons. Neuron. 1999 Dec;24(4):989–1002. doi: 10.1016/s0896-6273(00)81045-4. [DOI] [PubMed] [Google Scholar]
- Nagamatsu S., Nakamichi Y., Yamamura C., Matsushima S., Watanabe T., Ozawa S., Furukawa H., Ishida H. Decreased expression of t-SNARE, syntaxin 1, and SNAP-25 in pancreatic beta-cells is involved in impaired insulin secretion from diabetic GK rat islets: restoration of decreased t-SNARE proteins improves impaired insulin secretion. Diabetes. 1999 Dec;48(12):2367–2373. doi: 10.2337/diabetes.48.12.2367. [DOI] [PubMed] [Google Scholar]
- Platzer J., Engel J., Schrott-Fischer A., Stephan K., Bova S., Chen H., Zheng H., Striessnig J. Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell. 2000 Jul 7;102(1):89–97. doi: 10.1016/s0092-8674(00)00013-1. [DOI] [PubMed] [Google Scholar]
- Renström E., Eliasson L., Bokvist K., Rorsman P. Cooling inhibits exocytosis in single mouse pancreatic B-cells by suppression of granule mobilization. J Physiol. 1996 Jul 1;494(Pt 1):41–52. doi: 10.1113/jphysiol.1996.sp021474. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rorsman P., Ashcroft F. M., Trube G. Single Ca channel currents in mouse pancreatic B-cells. Pflugers Arch. 1988 Oct;412(6):597–603. doi: 10.1007/BF00583760. [DOI] [PubMed] [Google Scholar]
- Rorsman P., Trube G. Calcium and delayed potassium currents in mouse pancreatic beta-cells under voltage-clamp conditions. J Physiol. 1986 May;374:531–550. doi: 10.1113/jphysiol.1986.sp016096. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rorsman Patrik, Eliasson Lena, Renström Erik, Gromada Jesper, Barg Sebastian, Göpel Sven. The Cell Physiology of Biphasic Insulin Secretion. News Physiol Sci. 2000 Apr;15(NaN):72–77. doi: 10.1152/physiologyonline.2000.15.2.72. [DOI] [PubMed] [Google Scholar]
- Seino S., Chen L., Seino M., Blondel O., Takeda J., Johnson J. H., Bell G. I. Cloning of the alpha 1 subunit of a voltage-dependent calcium channel expressed in pancreatic beta cells. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):584–588. doi: 10.1073/pnas.89.2.584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith P. A., Aschroft F. M., Fewtrell C. M. Permeation and gating properties of the L-type calcium channel in mouse pancreatic beta cells. J Gen Physiol. 1993 May;101(5):767–797. doi: 10.1085/jgp.101.5.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Striessnig J., Grabner M., Mitterdorfer J., Hering S., Sinnegger M. J., Glossmann H. Structural basis of drug binding to L Ca2+ channels. Trends Pharmacol Sci. 1998 Mar;19(3):108–115. doi: 10.1016/s0165-6147(98)01171-7. [DOI] [PubMed] [Google Scholar]
- Takahashi N., Kadowaki T., Yazaki Y., Miyashita Y., Kasai H. Multiple exocytotic pathways in pancreatic beta cells. J Cell Biol. 1997 Jul 14;138(1):55–64. doi: 10.1083/jcb.138.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Voets T. Dissection of three Ca2+-dependent steps leading to secretion in chromaffin cells from mouse adrenal slices. Neuron. 2000 Nov;28(2):537–545. doi: 10.1016/s0896-6273(00)00131-8. [DOI] [PubMed] [Google Scholar]
- Voets T., Neher E., Moser T. Mechanisms underlying phasic and sustained secretion in chromaffin cells from mouse adrenal slices. Neuron. 1999 Jul;23(3):607–615. doi: 10.1016/s0896-6273(00)80812-0. [DOI] [PubMed] [Google Scholar]
- Wiser O., Trus M., Hernández A., Renström E., Barg S., Rorsman P., Atlas D. The voltage sensitive Lc-type Ca2+ channel is functionally coupled to the exocytotic machinery. Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):248–253. doi: 10.1073/pnas.96.1.248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu M. N., Fergestad T., Lloyd T. E., He Y., Broadie K., Bellen H. J. Syntaxin 1A interacts with multiple exocytic proteins to regulate neurotransmitter release in vivo. Neuron. 1999 Jul;23(3):593–605. doi: 10.1016/s0896-6273(00)80811-9. [DOI] [PubMed] [Google Scholar]
- Yang S. N., Larsson O., Bränström R., Bertorello A. M., Leibiger B., Leibiger I. B., Moede T., Köhler M., Meister B., Berggren P. O. Syntaxin 1 interacts with the L(D) subtype of voltage-gated Ca(2+) channels in pancreatic beta cells. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10164–10169. doi: 10.1073/pnas.96.18.10164. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Gersdorff H., Sakaba T., Berglund K., Tachibana M. Submillisecond kinetics of glutamate release from a sensory synapse. Neuron. 1998 Nov;21(5):1177–1188. doi: 10.1016/s0896-6273(00)80634-0. [DOI] [PubMed] [Google Scholar]