Abstract
In this study we investigated the interaction of salmon and human calcitonin (Ct) with artificial lipid bilayer membranes. Both peptides were able to form either transient or permanent channels in the model membranes. The channels formed by salmon Ct at concentration (125 nM) had, on average, a single-channel conductance of 0.58 +/- 0.04 nS in 1M KCl (+10 mV), which is voltage-dependent at lower voltages. Human Ct forms at the same concentration channels with a much lower probability, and high voltages of up to +150 mV were needed to initiate channel formation. The estimated single-channel conductance formed under these conditions was approximately 0.0119 +/- 0.0003 nS in 1 M KCl. Both salmon and human Ct channels were found to be permeable to calcium ions. The possibility is discussed that the superior therapeutic effect of salmon Ct as a tool to treat bone disorders, including Paget disease, osteoporosis, and hypercalcemia of malignancy, rather than human Ct is related to the lack of the fibrillating property of salmon Ct. Preliminary data indicate that also eel and porcine Ct and carbocalcitonin form channels in model membranes.
Full Text
The Full Text of this article is available as a PDF (152.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amodeo P., Motta A., Strazzullo G., Castiglione Morelli M. A. Conformational flexibility in calcitonin: the dynamic properties of human and salmon calcitonin in solution. J Biomol NMR. 1999 Feb;13(2):161–174. doi: 10.1023/a:1008365322148. [DOI] [PubMed] [Google Scholar]
- Arvinte T., Drake A. F. Comparative study of human and salmon calcitonin secondary structure in solutions with low dielectric constants. J Biol Chem. 1993 Mar 25;268(9):6408–6414. [PubMed] [Google Scholar]
- Bamberg E., Apell H. J., Alpes H. Structure of the gramicidin A channel: discrimination between the piL,D and the beta helix by electrical measurements with lipid bilayer membranes. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2402–2406. doi: 10.1073/pnas.74.6.2402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bechinger B., Ruysschaert J. M., Goormaghtigh E. Membrane helix orientation from linear dichroism of infrared attenuated total reflection spectra. Biophys J. 1999 Jan;76(1 Pt 1):552–563. doi: 10.1016/S0006-3495(99)77223-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bechinger B., Zasloff M., Opella S. J. Structure and orientation of the antibiotic peptide magainin in membranes by solid-state nuclear magnetic resonance spectroscopy. Protein Sci. 1993 Dec;2(12):2077–2084. doi: 10.1002/pro.5560021208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benz R., Janko K., Boos W., Läuger P. Formation of large, ion-permeable membrane channels by the matrix protein (porin) of Escherichia coli. Biochim Biophys Acta. 1978 Aug 17;511(3):305–319. doi: 10.1016/0005-2736(78)90269-9. [DOI] [PubMed] [Google Scholar]
- Benz R., Janko K., Läuger P. Ionic selectivity of pores formed by the matrix protein (porin) of Escherichia coli. Biochim Biophys Acta. 1979 Mar 8;551(2):238–247. doi: 10.1016/0005-2736(89)90002-3. [DOI] [PubMed] [Google Scholar]
- Boheim G. Statistical analysis of alamethicin channels in black lipid membranes. J Membr Biol. 1974;19(3):277–303. doi: 10.1007/BF01869983. [DOI] [PubMed] [Google Scholar]
- Boujrad F., Dauphin F., de Beaurepaire R. Calcitonin increases 5-HT1A binding site densities in the brain of adrenalectomized rats. Brain Res. 1998 Nov 23;812(1-2):279–282. doi: 10.1016/s0006-8993(98)00970-6. [DOI] [PubMed] [Google Scholar]
- Bradshaw J. P., Duff K. C., Gilchrist P. J., Saxena A. M. Neutron diffraction studies of amphipathic helices in phospholipid bilayers. Basic Life Sci. 1996;64:191–202. doi: 10.1007/978-1-4615-5847-7_17. [DOI] [PubMed] [Google Scholar]
- Bradshaw J. P. Phosphatydylglycerol promotes bilayer insertion of salmon calcitonin. Biophys J. 1997 May;72(5):2180–2186. doi: 10.1016/S0006-3495(97)78861-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engelman D. M., Steitz T. A. The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis. Cell. 1981 Feb;23(2):411–422. doi: 10.1016/0092-8674(81)90136-7. [DOI] [PubMed] [Google Scholar]
- Epand R. M., Epand R. F., Orlowski R. C., Schlueter R. J., Boni L. T., Hui S. W. Amphipathic helix and its relationship to the interaction of calcitonin with phospholipids. Biochemistry. 1983 Oct 25;22(22):5074–5084. doi: 10.1021/bi00291a005. [DOI] [PubMed] [Google Scholar]
- Fischer J. A., Tobler P. H., Kaufmann M., Born W., Henke H., Cooper P. E., Sagar S. M., Martin J. B. Calcitonin: regional distribution of the hormone and its binding sites in the human brain and pituitary. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7801–7805. doi: 10.1073/pnas.78.12.7801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gallucci E., Micelli S., Monticelli G. Pore formation in lipid bilayer membranes made of phosphatidylinositol and oxidized cholesterol followed by means of alternating current. Biophys J. 1996 Aug;71(2):824–831. doi: 10.1016/S0006-3495(96)79283-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilchrist P. J., Bradshaw J. P. Amyloid formation by salmon calcitonin. Biochim Biophys Acta. 1993 Aug 4;1182(1):111–114. doi: 10.1016/0925-4439(93)90160-3. [DOI] [PubMed] [Google Scholar]
- Grant E., Jr, Beeler T. J., Taylor K. M., Gable K., Roseman M. A. Mechanism of magainin 2a induced permeabilization of phospholipid vesicles. Biochemistry. 1992 Oct 20;31(41):9912–9918. doi: 10.1021/bi00156a008. [DOI] [PubMed] [Google Scholar]
- Hall J. E., Vodyanoy I., Balasubramanian T. M., Marshall G. R. Alamethicin. A rich model for channel behavior. Biophys J. 1984 Jan;45(1):233–247. doi: 10.1016/S0006-3495(84)84151-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hashimoto Y., Toma K., Nishikido J., Yamamoto K., Haneda K., Inazu T., Valentine K. G., Opella S. J. Effects of glycosylation on the structure and dynamics of eel calcitonin in micelles and lipid bilayers determined by nuclear magnetic resonance spectroscopy. Biochemistry. 1999 Jun 29;38(26):8377–8384. doi: 10.1021/bi983018j. [DOI] [PubMed] [Google Scholar]
- Jacobs R. E., White S. H. The nature of the hydrophobic binding of small peptides at the bilayer interface: implications for the insertion of transbilayer helices. Biochemistry. 1989 Apr 18;28(8):3421–3437. doi: 10.1021/bi00434a042. [DOI] [PubMed] [Google Scholar]
- Lane J. M., Russell L., Khan S. N. Osteoporosis. Clin Orthop Relat Res. 2000 Mar;(372):139–150. doi: 10.1097/00003086-200003000-00016. [DOI] [PubMed] [Google Scholar]
- Matsuzaki K., Mitani Y., Akada K. Y., Murase O., Yoneyama S., Zasloff M., Miyajima K. Mechanism of synergism between antimicrobial peptides magainin 2 and PGLa. Biochemistry. 1998 Oct 27;37(43):15144–15153. doi: 10.1021/bi9811617. [DOI] [PubMed] [Google Scholar]
- Micelli S., Gallucci E., Picciarelli V. Studies of mitochondrial porin incorporation parameters and voltage-gated mechanism with different black lipid membranes. Bioelectrochemistry. 2000 Sep;52(1):63–75. doi: 10.1016/s0302-4598(00)00085-4. [DOI] [PubMed] [Google Scholar]
- Milik M., Skolnick J. Insertion of peptide chains into lipid membranes: an off-lattice Monte Carlo dynamics model. Proteins. 1993 Jan;15(1):10–25. doi: 10.1002/prot.340150104. [DOI] [PubMed] [Google Scholar]
- Motta A., Andreotti G., Amodeo P., Strazzullo G., Castiglione Morelli M. A. Solution structure of human calcitonin in membrane-mimetic environment: the role of the amphipathic helix. Proteins. 1998 Aug 15;32(3):314–323. [PubMed] [Google Scholar]
- Motta A., Pastore A., Goud N. A., Castiglione Morelli M. A. Solution conformation of salmon calcitonin in sodium dodecyl sulfate micelles as determined by two-dimensional NMR and distance geometry calculations. Biochemistry. 1991 Oct 29;30(43):10444–10450. doi: 10.1021/bi00107a012. [DOI] [PubMed] [Google Scholar]
- Sahl H. G., Kordel M., Benz R. Voltage-dependent depolarization of bacterial membranes and artificial lipid bilayers by the peptide antibiotic nisin. Arch Microbiol. 1987;149(2):120–124. doi: 10.1007/BF00425076. [DOI] [PubMed] [Google Scholar]
- Schmidt M. C., Rothen-Rutishauser B., Rist B., Beck-Sickinger A., Wunderli-Allenspach H., Rubas W., Sadée W., Merkle H. P. Translocation of human calcitonin in respiratory nasal epithelium is associated with self-assembly in lipid membrane. Biochemistry. 1998 Nov 24;37(47):16582–16590. doi: 10.1021/bi981219h. [DOI] [PubMed] [Google Scholar]
- Sexton P. M., Findlay D. M., Martin T. J. Calcitonin. Curr Med Chem. 1999 Nov;6(11):1067–1093. [PubMed] [Google Scholar]
- Siligardi G., Samorí B., Melandri S., Visconti M., Drake A. F. Correlations between biological activities and conformational properties for human, salmon, eel, porcine calcitonins and Elcatonin elucidated by CD spectroscopy. Eur J Biochem. 1994 May 1;221(3):1117–1125. doi: 10.1111/j.1432-1033.1994.tb18832.x. [DOI] [PubMed] [Google Scholar]
- Torres-Lugo M., Peppas N. A. Transmucosal delivery systems for calcitonin: a review. Biomaterials. 2000 Jun;21(12):1191–1196. doi: 10.1016/s0142-9612(00)00011-9. [DOI] [PubMed] [Google Scholar]
- Tosteson M. T., Alvarez O., Hubbell W., Bieganski R. M., Attenbach C., Caporales L. H., Levy J. J., Nutt R. F., Rosenblatt M., Tosteson D. C. Primary structure of peptides and ion channels. Role of amino acid side chains in voltage gating of melittin channels. Biophys J. 1990 Dec;58(6):1367–1375. doi: 10.1016/S0006-3495(90)82483-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallach S., Rousseau G., Martin L., Azria M. Effects of calcitonin on animal and in vitro models of skeletal metabolism. Bone. 1999 Nov;25(5):509–516. doi: 10.1016/s8756-3282(99)00200-8. [DOI] [PubMed] [Google Scholar]
- Williams R. W., Starman R., Taylor K. M., Gable K., Beeler T., Zasloff M., Covell D. Raman spectroscopy of synthetic antimicrobial frog peptides magainin 2a and PGLa. Biochemistry. 1990 May 8;29(18):4490–4496. doi: 10.1021/bi00470a031. [DOI] [PubMed] [Google Scholar]