Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Dec;81(6):3339–3345. doi: 10.1016/S0006-3495(01)75967-X

Membrane structural perturbations caused by anesthetics and nonimmobilizers: a molecular dynamics investigation.

L Koubi 1, M Tarek 1, S Bandyopadhyay 1, M L Klein 1, D Scharf 1
PMCID: PMC1301791  PMID: 11720997

Abstract

The structural perturbations of the fully hydrated dimyristoyl-phosphatidylcholine bilayer induced by the presence of hexafluoroethane C(2F6), a "nonimmobilizer," have been examined by molecular dynamics simulations and compared with the effects produced by halothane CF3CHBrCl, an "anesthetic," on a similar bilayer (DPPC) (Koubi et al., Biophys. J. 2000. 78:800). We find that the overall structure of the lipid bilayer and the zwitterionic head-group dipole orientation undergo only a slight modification compared with the pure lipid bilayer, with virtually no change in the potential across the interface. This is in contrast to the anesthetic case in which the presence of the molecule led to a large perturbation of the electrostatic potential across to the membrane interface. Similarly, the analysis of the structural and dynamical properties of the lipid core are unchanged in the presence of the nonimmobilizer although there is a substantial increase in the microscopic viscosity for the system containing the anesthetic. These contrasting perturbations of the lipid membrane caused by those quite similarly sized molecules may explain the difference in their physiological effects as anesthetics and nonimmobilizers, respectively.

Full Text

The Full Text of this article is available as a PDF (486.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baber J., Ellena J. F., Cafiso D. S. Distribution of general anesthetics in phospholipid bilayers determined using 2H NMR and 1H-1H NOE spectroscopy. Biochemistry. 1995 May 16;34(19):6533–6539. doi: 10.1021/bi00019a035. [DOI] [PubMed] [Google Scholar]
  2. Büldt G., Gally H. U., Seelig J., Zaccai G. Neutron diffraction studies on phosphatidylcholine model membranes. I. Head group conformation. J Mol Biol. 1979 Nov 15;134(4):673–691. doi: 10.1016/0022-2836(79)90479-0. [DOI] [PubMed] [Google Scholar]
  3. Eckenhoff R. G. An inhalational anesthetic binding domain in the nicotinic acetylcholine receptor. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2807–2810. doi: 10.1073/pnas.93.7.2807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fang Z., Laster M. J., Ionescu P., Koblin D. D., Sonner J., Eger E. I., 2nd, Halsey M. J. Effects of inhaled nonimmobilizer, proconvulsant compounds on desflurane minimum alveolar anesthetic concentration in rats. Anesth Analg. 1997 Nov;85(5):1149–1153. doi: 10.1097/00000539-199711000-00035. [DOI] [PubMed] [Google Scholar]
  5. Forman S. A., Raines D. E. Nonanesthetic volatile drugs obey the Meyer-Overton correlation in two molecular protein site models. Anesthesiology. 1998 Jun;88(6):1535–1548. doi: 10.1097/00000542-199806000-00018. [DOI] [PubMed] [Google Scholar]
  6. Franks N. P., Lieb W. R. Do general anaesthetics act by competitive binding to specific receptors? Nature. 1984 Aug 16;310(5978):599–601. doi: 10.1038/310599a0. [DOI] [PubMed] [Google Scholar]
  7. Franks N. P., Lieb W. R. Molecular and cellular mechanisms of general anaesthesia. Nature. 1994 Feb 17;367(6464):607–614. doi: 10.1038/367607a0. [DOI] [PubMed] [Google Scholar]
  8. Franks N. P., Lieb W. R. Molecular mechanisms of general anaesthesia. Nature. 1982 Dec 9;300(5892):487–493. doi: 10.1038/300487a0. [DOI] [PubMed] [Google Scholar]
  9. Kandel L., Chortkoff B. S., Sonner J., Laster M. J., Eger E. I., 2nd Nonanesthetics can suppress learning. Anesth Analg. 1996 Feb;82(2):321–326. doi: 10.1097/00000539-199602000-00019. [DOI] [PubMed] [Google Scholar]
  10. Koblin D. D., Chortkoff B. S., Laster M. J., Eger E. I., 2nd, Halsey M. J., Ionescu P. Polyhalogenated and perfluorinated compounds that disobey the Meyer-Overton hypothesis. Anesth Analg. 1994 Dec;79(6):1043–1048. doi: 10.1213/00000539-199412000-00004. [DOI] [PubMed] [Google Scholar]
  11. Koubi L., Tarek M., Klein M. L., Scharf D. Distribution of halothane in a dipalmitoylphosphatidylcholine bilayer from molecular dynamics calculations. Biophys J. 2000 Feb;78(2):800–811. doi: 10.1016/S0006-3495(00)76637-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Miller K. W. The nature of the site of general anesthesia. Int Rev Neurobiol. 1985;27:1–61. doi: 10.1016/s0074-7742(08)60555-3. [DOI] [PubMed] [Google Scholar]
  13. Minami K., Vanderah T. W., Minami M., Harris R. A. Inhibitory effects of anesthetics and ethanol on muscarinic receptors expressed in Xenopus oocytes. Eur J Pharmacol. 1997 Nov 27;339(2-3):237–244. doi: 10.1016/s0014-2999(97)01354-x. [DOI] [PubMed] [Google Scholar]
  14. North C., Cafiso D. S. Contrasting membrane localization and behavior of halogenated cyclobutanes that follow or violate the Meyer-Overton hypothesis of general anesthetic potency. Biophys J. 1997 Apr;72(4):1754–1761. doi: 10.1016/S0006-3495(97)78821-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Petrache H. I., Tristram-Nagle S., Nagle J. F. Fluid phase structure of EPC and DMPC bilayers. Chem Phys Lipids. 1998 Sep;95(1):83–94. doi: 10.1016/s0009-3084(98)00068-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Taheri S., Laster M. J., Liu J., Eger E. I., 2nd, Halsey M. J., Koblin D. D. Anesthesia by n-alkanes not consistent with the Meyer-Overton hypothesis: determinations of the solubilities of alkanes in saline and various lipids. Anesth Analg. 1993 Jul;77(1):7–11. doi: 10.1213/00000539-199307000-00003. [DOI] [PubMed] [Google Scholar]
  17. Tang P., Hu J., Liachenko S., Xu Y. Distinctly different interactions of anesthetic and nonimmobilizer with transmembrane channel peptides. Biophys J. 1999 Aug;77(2):739–746. doi: 10.1016/S0006-3495(99)76928-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tang P., Simplaceanu V., Xu Y. Structural consequences of anesthetic and nonimmobilizer interaction with gramicidin A channels. Biophys J. 1999 May;76(5):2346–2350. doi: 10.1016/S0006-3495(99)77391-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tu K., Tarek M., Klein M. L., Scharf D. Effects of anesthetics on the structure of a phospholipid bilayer: molecular dynamics investigation of halothane in the hydrated liquid crystal phase of dipalmitoylphosphatidylcholine. Biophys J. 1998 Nov;75(5):2123–2134. doi: 10.1016/S0006-3495(98)77655-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Venable R. M., Zhang Y., Hardy B. J., Pastor R. W. Molecular dynamics simulations of a lipid bilayer and of hexadecane: an investigation of membrane fluidity. Science. 1993 Oct 8;262(5131):223–226. doi: 10.1126/science.8211140. [DOI] [PubMed] [Google Scholar]
  21. Xu Y., Tang P., Liachenko S. Unifying characteristics of sites of anesthetic action revealed by combined use of anesthetics and non-anesthetics. Toxicol Lett. 1998 Nov 23;100-101:347–352. doi: 10.1016/s0378-4274(98)00205-7. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES