Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Dec;81(6):3363–3376. doi: 10.1016/S0006-3495(01)75969-3

Flexibility of the cytoplasmic domain of the anion exchange protein, band 3, in human erythrocytes.

S M Blackman 1, E J Hustedt 1, C E Cobb 1, A H Beth 1
PMCID: PMC1301793  PMID: 11720999

Abstract

The rotational flexibility of the cytoplasmic domain of band 3, in the region that is proximal to the inner membrane surface, has been investigated using a combination of time-resolved optical anisotropy (TOA) and saturation-transfer electron paramagnetic resonance (ST-EPR) spectroscopies. TOA studies of rotational diffusion of the transmembrane domain of band 3 show a dramatic decrease in residual anisotropy following cleavage of the link with the cytoplasmic domain by trypsin (E. A. Nigg and R. J. Cherry, 1980, Proc. Natl. Acad. Sci. U.S.A. 77:4702-4706). This result is compatible with two independent hypotheses: 1) trypsin cleavage leads to dissociation of large clusters of band 3 that are immobile on the millisecond time scale, or 2) trypsin cleavage leads to release of a constraint to uniaxial rotational diffusion of the transmembrane domain. ST-EPR studies at X- and Q-band microwave frequencies detect rotational diffusion of the transmembrane domain of band 3 about the membrane normal axis of reasonably large amplitude that does not change upon cleavage with trypsin. These ST-EPR results are not consistent with dissociation of clusters of band 3 as a result of cleavage with trypsin. Global analyses of the ST-EPR data using a newly developed algorithm indicate that any constraint to rotational diffusion of the transmembrane domain of band 3 via interactions of the cytoplasmic domain with the membrane skeleton must be sufficiently weak to allow rotational excursions in excess of 32 degrees full-width for a square-well potential. In support of this result, analyses of the TOA data in terms of restricted amplitude uniaxial rotational diffusion models suggest that the membrane-spanning domain of that population of band 3 that is linked to the membrane skeleton is constrained to diffuse in a square-well of approximately 73 degrees full-width. This degree of flexibility may be necessary for providing the unique mechanical properties of the erythrocyte membrane.

Full Text

The Full Text of this article is available as a PDF (193.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beechem J. M. Global analysis of biochemical and biophysical data. Methods Enzymol. 1992;210:37–54. doi: 10.1016/0076-6879(92)10004-w. [DOI] [PubMed] [Google Scholar]
  2. Bennett V., Stenbuck P. J. The membrane attachment protein for spectrin is associated with band 3 in human erythrocyte membranes. Nature. 1979 Aug 9;280(5722):468–473. doi: 10.1038/280468a0. [DOI] [PubMed] [Google Scholar]
  3. Beth A. H., Balasubramanian K., Wilder R. T., Venkataramu S. D., Robinson B. H., Dalton L. R., Pearson D. E., Park J. H. Structural and motional changes in glyceraldehyde-3-phosphate dehydrogenase upon binding to the band-3 protein of the erythrocyte membrane examined with [15N,2H]maleimide spin label and electron paramagnetic resonance. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4955–4959. doi: 10.1073/pnas.78.8.4955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blackman S. M., Cobb C. E., Beth A. H., Piston D. W. The orientation of eosin-5-maleimide on human erythrocyte band 3 measured by fluorescence polarization microscopy. Biophys J. 1996 Jul;71(1):194–208. doi: 10.1016/S0006-3495(96)79216-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blackman S. M., Piston D. W., Beth A. H. Oligomeric state of human erythrocyte band 3 measured by fluorescence resonance energy homotransfer. Biophys J. 1998 Aug;75(2):1117–1130. doi: 10.1016/S0006-3495(98)77601-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Casey J. R., Reithmeier R. A. Analysis of the oligomeric state of Band 3, the anion transport protein of the human erythrocyte membrane, by size exclusion high performance liquid chromatography. Oligomeric stability and origin of heterogeneity. J Biol Chem. 1991 Aug 25;266(24):15726–15737. [PubMed] [Google Scholar]
  7. Cassoly R. Interaction of hemoglobin with the red blood cell membrane. A saturation transfer electron paramagnetic resonance study. Biochim Biophys Acta. 1982 Jul 28;689(2):203–209. doi: 10.1016/0005-2736(82)90252-8. [DOI] [PubMed] [Google Scholar]
  8. Che A., Cherry R. J. Loss of rotational mobility of band 3 proteins in human erythrocyte membranes induced by antibodies to glycophorin A. Biophys J. 1995 May;68(5):1881–1887. doi: 10.1016/S0006-3495(95)80365-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cobb C. E., Beth A. H. Identification of the eosinyl-5-maleimide reaction site on the human erythrocyte anion-exchange protein: overlap with the reaction sites of other chemical probes. Biochemistry. 1990 Sep 11;29(36):8283–8290. doi: 10.1021/bi00488a012. [DOI] [PubMed] [Google Scholar]
  10. Cobb C. E., Hustedt E. J., Beechem J. M., Beth A. H. Protein rotational dynamics investigated with a dual EPR/optical molecular probe. Spin-labeled eosin. Biophys J. 1993 Mar;64(3):605–613. doi: 10.1016/S0006-3495(93)81419-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Corbett J. D., Golan D. E. Band 3 and glycophorin are progressively aggregated in density-fractionated sickle and normal red blood cells. Evidence from rotational and lateral mobility studies. J Clin Invest. 1993 Jan;91(1):208–217. doi: 10.1172/JCI116172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  13. Golan D. E., Corbett J. D., Korsgren C., Thatte H. S., Hayette S., Yawata Y., Cohen C. M. Control of band 3 lateral and rotational mobility by band 4.2 in intact erythrocytes: release of band 3 oligomers from low-affinity binding sites. Biophys J. 1996 Mar;70(3):1534–1542. doi: 10.1016/S0006-3495(96)79717-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hall T. G., Bennett V. Regulatory domains of erythrocyte ankyrin. J Biol Chem. 1987 Aug 5;262(22):10537–10545. [PubMed] [Google Scholar]
  15. Hustedt E. J., Beth A. H. Analysis of saturation transfer electron paramagnetic resonance spectra of a spin-labeled integral membrane protein, band 3, in terms of the uniaxial rotational diffusion model. Biophys J. 1995 Oct;69(4):1409–1423. doi: 10.1016/S0006-3495(95)80010-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hustedt E. J., Beth A. H. Determination of the orientation of a band 3 affinity spin-label relative to the membrane normal axis of the human erythrocyte. Biochemistry. 1996 May 28;35(21):6944–6954. doi: 10.1021/bi9601518. [DOI] [PubMed] [Google Scholar]
  17. Hustedt E. J., Cobb C. E., Beth A. H., Beechem J. M. Measurement of rotational dynamics by the simultaneous nonlinear analysis of optical and EPR data. Biophys J. 1993 Mar;64(3):614–621. doi: 10.1016/S0006-3495(93)81420-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jarolim P., Palek J., Amato D., Hassan K., Sapak P., Nurse G. T., Rubin H. L., Zhai S., Sahr K. E., Liu S. C. Deletion in erythrocyte band 3 gene in malaria-resistant Southeast Asian ovalocytosis. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11022–11026. doi: 10.1073/pnas.88.24.11022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Lepke S., Passow H. Effects of incorporated trypsin on anion exchange and membrane proteins in human red blood cell ghosts. Biochim Biophys Acta. 1976 Dec 2;455(2):353–370. doi: 10.1016/0005-2736(76)90311-4. [DOI] [PubMed] [Google Scholar]
  21. Low P. S. Structure and function of the cytoplasmic domain of band 3: center of erythrocyte membrane-peripheral protein interactions. Biochim Biophys Acta. 1986 Sep 22;864(2):145–167. doi: 10.1016/0304-4157(86)90009-2. [DOI] [PubMed] [Google Scholar]
  22. Low P. S., Westfall M. A., Allen D. P., Appell K. C. Characterization of the reversible conformational equilibrium of the cytoplasmic domain of erythrocyte membrane band 3. J Biol Chem. 1984 Nov 10;259(21):13070–13076. [PubMed] [Google Scholar]
  23. Lux S. E., John K. M., Kopito R. R., Lodish H. F. Cloning and characterization of band 3, the human erythrocyte anion-exchange protein (AE1). Proc Natl Acad Sci U S A. 1989 Dec;86(23):9089–9093. doi: 10.1073/pnas.86.23.9089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Matayoshi E. D., Jovin T. M. Rotational diffusion of band 3 in erythrocyte membranes. 1. Comparison of ghosts and intact cells. Biochemistry. 1991 Apr 9;30(14):3527–3538. doi: 10.1021/bi00228a025. [DOI] [PubMed] [Google Scholar]
  25. McPherson R. A., Sawyer W. H., Tilley L. Band 3 mobility in camelid elliptocytes: implications for erythrocyte shape. Biochemistry. 1993 Jul 6;32(26):6696–6702. doi: 10.1021/bi00077a024. [DOI] [PubMed] [Google Scholar]
  26. McPherson R. A., Sawyer W. H., Tilley L. Rotational diffusion of the erythrocyte integral membrane protein band 3: effect of hemichrome binding. Biochemistry. 1992 Jan 21;31(2):512–518. doi: 10.1021/bi00117a030. [DOI] [PubMed] [Google Scholar]
  27. Michaely P., Bennett V. The ANK repeats of erythrocyte ankyrin form two distinct but cooperative binding sites for the erythrocyte anion exchanger. J Biol Chem. 1995 Sep 15;270(37):22050–22057. doi: 10.1074/jbc.270.37.22050. [DOI] [PubMed] [Google Scholar]
  28. Moriyama R., Ideguchi H., Lombardo C. R., Van Dort H. M., Low P. S. Structural and functional characterization of band 3 from Southeast Asian ovalocytes. J Biol Chem. 1992 Dec 25;267(36):25792–25797. [PubMed] [Google Scholar]
  29. Nigg E. A., Cherry R. J. Anchorage of a band 3 population at the erythrocyte cytoplasmic membrane surface: protein rotational diffusion measurements. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4702–4706. doi: 10.1073/pnas.77.8.4702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Oikawa K., Lieberman D. M., Reithmeier R. A. Conformation and stability of the anion transport protein of human erythrocyte membranes. Biochemistry. 1985 Jun 4;24(12):2843–2848. doi: 10.1021/bi00333a005. [DOI] [PubMed] [Google Scholar]
  31. Peters L. L., Shivdasani R. A., Liu S. C., Hanspal M., John K. M., Gonzalez J. M., Brugnara C., Gwynn B., Mohandas N., Alper S. L. Anion exchanger 1 (band 3) is required to prevent erythrocyte membrane surface loss but not to form the membrane skeleton. Cell. 1996 Sep 20;86(6):917–927. doi: 10.1016/s0092-8674(00)80167-1. [DOI] [PubMed] [Google Scholar]
  32. Rybicki A. C., Schwartz R. S., Hustedt E. J., Cobb C. E. Increased rotational mobility and extractability of band 3 from protein 4.2-deficient erythrocyte membranes: evidence of a role for protein 4.2 in strengthening the band 3-cytoskeleton linkage. Blood. 1996 Oct 1;88(7):2745–2753. [PubMed] [Google Scholar]
  33. Schofield A. E., Tanner M. J., Pinder J. C., Clough B., Bayley P. M., Nash G. B., Dluzewski A. R., Reardon D. M., Cox T. M., Wilson R. J. Basis of unique red cell membrane properties in hereditary ovalocytosis. J Mol Biol. 1992 Feb 20;223(4):949–958. doi: 10.1016/0022-2836(92)90254-h. [DOI] [PubMed] [Google Scholar]
  34. Scothorn D. J., Wojcicki W. E., Hustedt E. J., Beth A. H., Cobb C. E. Synthesis and characterization of a novel spin-labeled affinity probe of human erythrocyte band 3: characteristics of the stilbenedisulfonate binding site. Biochemistry. 1996 May 28;35(21):6931–6943. doi: 10.1021/bi960150f. [DOI] [PubMed] [Google Scholar]
  35. Southgate C. D., Chishti A. H., Mitchell B., Yi S. J., Palek J. Targeted disruption of the murine erythroid band 3 gene results in spherocytosis and severe haemolytic anaemia despite a normal membrane skeleton. Nat Genet. 1996 Oct;14(2):227–230. doi: 10.1038/ng1096-227. [DOI] [PubMed] [Google Scholar]
  36. Steck T. L., Ramos B., Strapazon E. Proteolytic dissection of band 3, the predominant transmembrane polypeptide of the human erythrocyte membrane. Biochemistry. 1976 Mar 9;15(5):1153–1161. doi: 10.1021/bi00650a030. [DOI] [PubMed] [Google Scholar]
  37. Tanner M. J., Martin P. G., High S. The complete amino acid sequence of the human erythrocyte membrane anion-transport protein deduced from the cDNA sequence. Biochem J. 1988 Dec 15;256(3):703–712. doi: 10.1042/bj2560703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tanner M. J. The structure and function of band 3 (AE1): recent developments (review). Mol Membr Biol. 1997 Oct-Dec;14(4):155–165. doi: 10.3109/09687689709048178. [DOI] [PubMed] [Google Scholar]
  39. Thevenin B. J., Low P. S. Kinetics and regulation of the ankyrin-band 3 interaction of the human red blood cell membrane. J Biol Chem. 1990 Sep 25;265(27):16166–16172. [PubMed] [Google Scholar]
  40. Turrini F., Arese P., Yuan J., Low P. S. Clustering of integral membrane proteins of the human erythrocyte membrane stimulates autologous IgG binding, complement deposition, and phagocytosis. J Biol Chem. 1991 Dec 15;266(35):23611–23617. [PubMed] [Google Scholar]
  41. Wang D. N. Band 3 protein: structure, flexibility and function. FEBS Lett. 1994 Jun 6;346(1):26–31. doi: 10.1016/0014-5793(94)00468-4. [DOI] [PubMed] [Google Scholar]
  42. Wang D. N., Kühlbrandt W., Sarabia V. E., Reithmeier R. A. Two-dimensional structure of the membrane domain of human band 3, the anion transport protein of the erythrocyte membrane. EMBO J. 1993 Jun;12(6):2233–2239. doi: 10.1002/j.1460-2075.1993.tb05876.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Weinstein R. S., Khodadad J. K., Steck T. L. Fine structure of the band 3 protein in human red cell membranes: freeze-fracture studies. J Supramol Struct. 1978;8(3):325–335. doi: 10.1002/jss.400080310. [DOI] [PubMed] [Google Scholar]
  44. Willardson B. M., Thevenin B. J., Harrison M. L., Kuster W. M., Benson M. D., Low P. S. Localization of the ankyrin-binding site on erythrocyte membrane protein, band 3. J Biol Chem. 1989 Sep 25;264(27):15893–15899. [PubMed] [Google Scholar]
  45. Yi S. J., Liu S. C., Derick L. H., Murray J., Barker J. E., Cho M. R., Palek J., Golan D. E. Red cell membranes of ankyrin-deficient nb/nb mice lack band 3 tetramers but contain normal membrane skeletons. Biochemistry. 1997 Aug 5;36(31):9596–9604. doi: 10.1021/bi9704966. [DOI] [PubMed] [Google Scholar]
  46. Zhang D., Kiyatkin A., Bolin J. T., Low P. S. Crystallographic structure and functional interpretation of the cytoplasmic domain of erythrocyte membrane band 3. Blood. 2000 Nov 1;96(9):2925–2933. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES