Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Dec;81(6):3398–3408. doi: 10.1016/S0006-3495(01)75972-3

Partially condensed DNA conformations observed by single molecule fluorescence microscopy.

P Serwer 1, S J Hayes 1
PMCID: PMC1301796  PMID: 11721002

Abstract

To detect partially condensed conformations of a double-stranded DNA molecule, single molecule fluorescence microscopy is performed here. The single DNA molecules are ethidium stained, 670 kilobase pair bacteriophage G genomes that are observed both during and after expulsion from capsids. Expulsion occurs in an agarose gel. Just after expulsion, the entire G DNA molecule typically has a partially condensed conformation not previously described (called a balloon). A balloon subsequently extrudes a filamentous segment of DNA. The filamentous segment becomes gently elongated via diffusion into the network that forms the agarose gel. The elongated DNA molecule usually has bright spots that undergo both appearance/disappearance and apparent motion. These spots are called dynamic spots. A dynamic spot is assumed to be the image of a zone of partially condensed DNA segments (globule). The positions of globules along an elongated DNA molecule 1) are restricted primarily to time-stable regions with comparatively high thermal motion-induced, micrometer-scale bending of the DNA molecule and 2) move within a given region on a time scale smaller than the time scale of recording. Less mobile globules are observed when either magnesium cation or ethanol is added before gel-embedding DNA molecules. These observations are explained by globules induced at equilibrium by a bending-dependent, inter-DNA segment force. Theory has previously predicted that globules are induced by electrostatic forces along an electrically charged polymer at equilibrium. The hypothesis is proposed that intracellular DNA globules assist action-at-a-distance during DNA metabolism.

Full Text

The Full Text of this article is available as a PDF (319.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bensimon A., Simon A., Chiffaudel A., Croquette V., Heslot F., Bensimon D. Alignment and sensitive detection of DNA by a moving interface. Science. 1994 Sep 30;265(5181):2096–2098. doi: 10.1126/science.7522347. [DOI] [PubMed] [Google Scholar]
  2. Bloomfield V. A. DNA condensation. Curr Opin Struct Biol. 1996 Jun;6(3):334–341. doi: 10.1016/s0959-440x(96)80052-2. [DOI] [PubMed] [Google Scholar]
  3. Bouchiat C., Wang M. D., Allemand J., Strick T., Block S. M., Croquette V. Estimating the persistence length of a worm-like chain molecule from force-extension measurements. Biophys J. 1999 Jan;76(1 Pt 1):409–413. doi: 10.1016/s0006-3495(99)77207-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bulger M., Groudine M. Looping versus linking: toward a model for long-distance gene activation. Genes Dev. 1999 Oct 1;13(19):2465–2477. doi: 10.1101/gad.13.19.2465. [DOI] [PubMed] [Google Scholar]
  5. Bustamante C., Marko J. F., Siggia E. D., Smith S. Entropic elasticity of lambda-phage DNA. Science. 1994 Sep 9;265(5178):1599–1600. doi: 10.1126/science.8079175. [DOI] [PubMed] [Google Scholar]
  6. Earnshaw W. C., Casjens S. R. DNA packaging by the double-stranded DNA bacteriophages. Cell. 1980 Sep;21(2):319–331. doi: 10.1016/0092-8674(80)90468-7. [DOI] [PubMed] [Google Scholar]
  7. Griess G. A., Serwer P., Horowitz P. M. Binding of ethidium to bacteriophage T7 and T7 deletion mutants. Biopolymers. 1985 Aug;24(8):1635–1646. doi: 10.1002/bip.360240816. [DOI] [PubMed] [Google Scholar]
  8. Haber C., Ruiz S. A., Wirtz D. Shape anisotropy of a single random-walk polymer. Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):10792–10795. doi: 10.1073/pnas.190320097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kantor Y, Kardar M. Instabilities of charged polyampholytes. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Feb;51(2):1299–1312. doi: 10.1103/physreve.51.1299. [DOI] [PubMed] [Google Scholar]
  10. Kuroiwa T., Nishibayashi S., Kawano S., Suzuki T. Visualization of DNA in various phages (T4, chi, T7, phi 29) by ethidium bromide epi-fluorescent microscopy. Experientia. 1981;37(9):969–971. doi: 10.1007/BF01971784. [DOI] [PubMed] [Google Scholar]
  11. LeDuc P., Haber C., Bao G., Wirtz D. Dynamics of individual flexible polymers in a shear flow. Nature. 1999 Jun 10;399(6736):564–566. doi: 10.1038/21148. [DOI] [PubMed] [Google Scholar]
  12. Perkins T. T., Smith D. E., Larson R. G., Chu S. Stretching of a single tethered polymer in a uniform flow. Science. 1995 Apr 7;268(5207):83–87. doi: 10.1126/science.7701345. [DOI] [PubMed] [Google Scholar]
  13. Rippe K., von Hippel P. H., Langowski J. Action at a distance: DNA-looping and initiation of transcription. Trends Biochem Sci. 1995 Dec;20(12):500–506. doi: 10.1016/s0968-0004(00)89117-3. [DOI] [PubMed] [Google Scholar]
  14. Rouzina I., Bloomfield V. A. DNA bending by small, mobile multivalent cations. Biophys J. 1998 Jun;74(6):3152–3164. doi: 10.1016/S0006-3495(98)78021-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schwartz D. C., Li X., Hernandez L. I., Ramnarain S. P., Huff E. J., Wang Y. K. Ordered restriction maps of Saccharomyces cerevisiae chromosomes constructed by optical mapping. Science. 1993 Oct 1;262(5130):110–114. doi: 10.1126/science.8211116. [DOI] [PubMed] [Google Scholar]
  16. Schwartz D. C., Samad A. Optical mapping approaches to molecular genomics. Curr Opin Biotechnol. 1997 Feb;8(1):70–74. doi: 10.1016/s0958-1669(97)80160-7. [DOI] [PubMed] [Google Scholar]
  17. Serwer P., Estrada A., Harris R. A. Video light microscopy of 670-kb DNA in a hanging drop: shape of the envelope of DNA. Biophys J. 1995 Dec;69(6):2649–2660. doi: 10.1016/S0006-3495(95)80135-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Smith D. E., Babcock H. P., Chu S. Single-polymer dynamics in steady shear flow. Science. 1999 Mar 12;283(5408):1724–1727. doi: 10.1126/science.283.5408.1724. [DOI] [PubMed] [Google Scholar]
  19. Smith S. B., Bendich A. J. Electrophoretic charge density and persistence length of DNA as measured by fluorescence microscopy. 1990 Jul-Aug 5Biopolymers. 29(8-9):1167–1173. doi: 10.1002/bip.360290807. [DOI] [PubMed] [Google Scholar]
  20. Stigter D., Bustamante C. Theory for the hydrodynamic and electrophoretic stretch of tethered B-DNA. Biophys J. 1998 Sep;75(3):1197–1210. doi: 10.1016/S0006-3495(98)74039-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sun M., Louie D., Serwer P. Single-event analysis of the packaging of bacteriophage T7 DNA concatemers in vitro. Biophys J. 1999 Sep;77(3):1627–1637. doi: 10.1016/S0006-3495(99)77011-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sun M., Serwer P. The conformation of DNA packaged in bacteriophage G. Biophys J. 1997 Feb;72(2 Pt 1):958–963. doi: 10.1016/s0006-3495(97)78730-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sun M., Son M., Serwer P. Formation and cleavage of a DNA network during in vitro bacteriophage T7 DNA packaging: light microscopy of DNA metabolism. Biochemistry. 1997 Oct 21;36(42):13018–13026. doi: 10.1021/bi971410b. [DOI] [PubMed] [Google Scholar]
  24. Ueda M., Oana H., Baba Y., Doi M., Yoshikawa K. Electrophoresis of long DNA molecules in linear polyacrylamide solutions. Biophys Chem. 1998 Apr 20;71(2-3):113–123. doi: 10.1016/s0301-4622(98)00093-3. [DOI] [PubMed] [Google Scholar]
  25. Wang M. D., Yin H., Landick R., Gelles J., Block S. M. Stretching DNA with optical tweezers. Biophys J. 1997 Mar;72(3):1335–1346. doi: 10.1016/S0006-3495(97)78780-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Williams L. D., Maher L. J., 3rd Electrostatic mechanisms of DNA deformation. Annu Rev Biophys Biomol Struct. 2000;29:497–521. doi: 10.1146/annurev.biophys.29.1.497. [DOI] [PubMed] [Google Scholar]
  27. Zimmerman S. B., Minton A. P. Macromolecular crowding: biochemical, biophysical, and physiological consequences. Annu Rev Biophys Biomol Struct. 1993;22:27–65. doi: 10.1146/annurev.bb.22.060193.000331. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES