Abstract
Alkaline phosphatase is an enzyme with a typical alpha/beta hydrolase fold. The conformational stability of the human placental alkaline phosphatase was examined with the chemical denaturant urea. The red shifts of fluorescence spectra show a complex unfolding process involving multiple equilibrium intermediates indicating differential stability of the subdomains of the enzyme. None of these unfolding intermediates were observed in the presence of 83 mM NaCl, indicating the importance of ionic interactions in the stabilization of the unfolding intermediates. Guanidinium chloride, on the other hand, could stabilize one of the unfolding intermediates, which is not a salt effect. Some of the unfolding intermediates were also observed in circular dichroism spectroscopy, which clearly indicates steady loss of helical structure during unfolding, but very little change was observed for the beta strand content until the late stage of the unfolding process. The enzyme does not lose its phosphate-binding ability after substantial tertiary structure changes, suggesting that the substrate-binding region is more resistant to chemical denaturant than the other structural domains. Global analysis of the fluorescence spectral change demonstrated the following folding-unfolding process of the enzyme: N <--> I(1) <--> I(2) <--> I(3) <--> I(4) <--> I(5) <--> D. These discrete intermediates are stable at urea concentrations of 2.6, 4.1, 4.7, 5.5, 6.6, and 7.7 M, respectively. These intermediates are further characterized by acrylamide and/or potassium iodide quenching of the intrinsic fluorescence of the enzyme and by the hydrophobic probes, 1-anilinonaphthalene-8-sulfonic acid and 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid. The stepwise unfolding process was interpreted by the folding energy landscape in terms of the unique structure of the enzyme. The rigid central beta-strand domain is surrounded by the peripheral alpha-helical and coil structures, which are marginally stable toward a chemical denaturant.
Full Text
The Full Text of this article is available as a PDF (416.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akiyama Y., Ito K. Folding and assembly of bacterial alkaline phosphatase in vitro and in vivo. J Biol Chem. 1993 Apr 15;268(11):8146–8150. [PubMed] [Google Scholar]
- Arighi C. N., Rossi J. P., Delfino J. M. Temperature-induced conformational transition of intestinal fatty acid binding protein enhancing ligand binding: a functional, spectroscopic, and molecular modeling study. Biochemistry. 1998 Nov 24;37(47):16802–16814. doi: 10.1021/bi981827x. [DOI] [PubMed] [Google Scholar]
- Aurora R., Creamer T. P., Srinivasan R., Rose G. D. Local interactions in protein folding: lessons from the alpha-helix. J Biol Chem. 1997 Jan 17;272(3):1413–1416. doi: 10.1074/jbc.272.3.1413. [DOI] [PubMed] [Google Scholar]
- Bai Y., Englander S. W. Future directions in folding: the multi-state nature of protein structure. Proteins. 1996 Feb;24(2):145–151. doi: 10.1002/(SICI)1097-0134(199602)24:2<145::AID-PROT1>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
- Baldwin R. L. The nature of protein folding pathways: the classical versus the new view. J Biomol NMR. 1995 Feb;5(2):103–109. doi: 10.1007/BF00208801. [DOI] [PubMed] [Google Scholar]
- Beasley J. R., Hecht M. H. Protein design: the choice of de novo sequences. J Biol Chem. 1997 Jan 24;272(4):2031–2034. doi: 10.1074/jbc.272.4.2031. [DOI] [PubMed] [Google Scholar]
- Brockwell D. J., Smith D. A., Radford S. E. Protein folding mechanisms: new methods and emerging ideas. Curr Opin Struct Biol. 2000 Feb;10(1):16–25. doi: 10.1016/s0959-440x(99)00043-3. [DOI] [PubMed] [Google Scholar]
- Cai K., Schirch V. Structural studies on folding intermediates of serine hydroxymethyltransferase using fluorescence resonance energy transfer. J Biol Chem. 1996 Nov 1;271(44):27311–27320. doi: 10.1074/jbc.271.44.27311. [DOI] [PubMed] [Google Scholar]
- Calhoun D. B., Vanderkooi J. M., Englander S. W. Penetration of small molecules into proteins studied by quenching of phosphorescence and fluorescence. Biochemistry. 1983 Mar 29;22(7):1533–1539. doi: 10.1021/bi00276a003. [DOI] [PubMed] [Google Scholar]
- Chang T. C., Huang S. M., Huang T. M., Chang G. G. Human placental alkaline phosphatase. An improved purification procedure and kinetic studies. Eur J Biochem. 1992 Oct 1;209(1):241–247. doi: 10.1111/j.1432-1033.1992.tb17282.x. [DOI] [PubMed] [Google Scholar]
- Cioni P., Piras L., Strambini G. B. Tryptophan phosphorescence as a monitor of the structural role of metal ions in alkaline phosphatase. Eur J Biochem. 1989 Nov 20;185(3):573–579. doi: 10.1111/j.1432-1033.1989.tb15152.x. [DOI] [PubMed] [Google Scholar]
- Dignam J. D., Qu X., Chaires J. B. Equilibrium unfolding of Bombyx mori glycyl-tRNA synthetase. J Biol Chem. 2000 Oct 30;276(6):4028–4037. doi: 10.1074/jbc.M006840200. [DOI] [PubMed] [Google Scholar]
- Dill K. A. Additivity principles in biochemistry. J Biol Chem. 1997 Jan 10;272(2):701–704. doi: 10.1074/jbc.272.2.701. [DOI] [PubMed] [Google Scholar]
- Dill K. A., Chan H. S. From Levinthal to pathways to funnels. Nat Struct Biol. 1997 Jan;4(1):10–19. doi: 10.1038/nsb0197-10. [DOI] [PubMed] [Google Scholar]
- Dill K. A. Polymer principles and protein folding. Protein Sci. 1999 Jun;8(6):1166–1180. doi: 10.1110/ps.8.6.1166. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dobryszycki P., Rymarczuk M., Bułaj G., Kochman M. Effect of acrylamide on aldolase structure. I. Induction of intermediate states. Biochim Biophys Acta. 1999 May 18;1431(2):338–350. doi: 10.1016/s0167-4838(99)00055-2. [DOI] [PubMed] [Google Scholar]
- Eftink M. R., Ghiron C. A. Fluorescence quenching studies with proteins. Anal Biochem. 1981 Jul 1;114(2):199–227. doi: 10.1016/0003-2697(81)90474-7. [DOI] [PubMed] [Google Scholar]
- Eftink M. R. The use of fluorescence methods to monitor unfolding transitions in proteins. Biophys J. 1994 Feb;66(2 Pt 1):482–501. doi: 10.1016/s0006-3495(94)80799-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fedorov A. N., Baldwin T. O. Cotranslational protein folding. J Biol Chem. 1997 Dec 26;272(52):32715–32718. doi: 10.1074/jbc.272.52.32715. [DOI] [PubMed] [Google Scholar]
- Fink A. L., Oberg K. A., Seshadri S. Discrete intermediates versus molten globule models for protein folding: characterization of partially folded intermediates of apomyoglobin. Fold Des. 1998;3(1):19–25. doi: 10.1016/S1359-0278(98)00005-4. [DOI] [PubMed] [Google Scholar]
- Fishman W. H. Alkaline phosphatase isozymes: recent progress. Clin Biochem. 1990 Apr;23(2):99–104. doi: 10.1016/0009-9120(90)80019-f. [DOI] [PubMed] [Google Scholar]
- Guex N., Peitsch M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997 Dec;18(15):2714–2723. doi: 10.1002/elps.1150181505. [DOI] [PubMed] [Google Scholar]
- Hoylaerts M. F., Millán J. L. Site-directed mutagenesis and epitope-mapped monoclonal antibodies define a catalytically important conformational difference between human placental and germ cell alkaline phosphatase. Eur J Biochem. 1991 Dec 5;202(2):605–616. doi: 10.1111/j.1432-1033.1991.tb16414.x. [DOI] [PubMed] [Google Scholar]
- Huang G. S., Oas T. G. Structure and stability of monomeric lambda repressor: NMR evidence for two-state folding. Biochemistry. 1995 Mar 28;34(12):3884–3892. doi: 10.1021/bi00012a003. [DOI] [PubMed] [Google Scholar]
- Hung H. C., Chang G. G. Biphasic denaturation of human placental alkaline phosphatase in guanidinium chloride. Proteins. 1998 Oct 1;33(1):49–61. doi: 10.1002/(sici)1097-0134(19981001)33:1<49::aid-prot5>3.0.co;2-g. [DOI] [PubMed] [Google Scholar]
- Hung H. C., Chang G. G. Differentiation of the slow-binding mechanism for magnesium ion activation and zinc ion inhibition of human placental alkaline phosphatase. Protein Sci. 2001 Jan;10(1):34–45. doi: 10.1110/ps.35201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaenicke R. Protein folding and association: in vitro studies for self-organization and targeting in the cell. Curr Top Cell Regul. 1996;34:209–314. doi: 10.1016/s0070-2137(96)80008-2. [DOI] [PubMed] [Google Scholar]
- Janeway C. M., Xu X., Murphy J. E., Chaidaroglou A., Kantrowitz E. R. Magnesium in the active site of Escherichia coli alkaline phosphatase is important for both structural stabilization and catalysis. Biochemistry. 1993 Feb 16;32(6):1601–1609. doi: 10.1021/bi00057a026. [DOI] [PubMed] [Google Scholar]
- Jennings P. A., Wright P. E. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science. 1993 Nov 5;262(5135):892–896. doi: 10.1126/science.8235610. [DOI] [PubMed] [Google Scholar]
- Kim E. E., Wyckoff H. W. Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis. J Mol Biol. 1991 Mar 20;218(2):449–464. doi: 10.1016/0022-2836(91)90724-k. [DOI] [PubMed] [Google Scholar]
- Kim P. S., Baldwin R. L. Intermediates in the folding reactions of small proteins. Annu Rev Biochem. 1990;59:631–660. doi: 10.1146/annurev.bi.59.070190.003215. [DOI] [PubMed] [Google Scholar]
- Le Du M. H., Stigbrand T., Taussig M. J., Menez A., Stura E. A. Crystal structure of alkaline phosphatase from human placenta at 1.8 A resolution. Implication for a substrate specificity. J Biol Chem. 2000 Dec 20;276(12):9158–9165. doi: 10.1074/jbc.M009250200. [DOI] [PubMed] [Google Scholar]
- Lehrer S. S. Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry. 1971 Aug 17;10(17):3254–3263. doi: 10.1021/bi00793a015. [DOI] [PubMed] [Google Scholar]
- Martin D. C., Pastra-Landis S. C., Kantrowitz E. R. Amino acid substitutions at the subunit interface of dimeric Escherichia coli alkaline phosphatase cause reduced structural stability. Protein Sci. 1999 May;8(5):1152–1159. doi: 10.1110/ps.8.5.1152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merritt E. A., Murphy M. E. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr D Biol Crystallogr. 1994 Nov 1;50(Pt 6):869–873. doi: 10.1107/S0907444994006396. [DOI] [PubMed] [Google Scholar]
- Mersol J. V., Steel D. G., Gafni A. Detection of intermediate protein conformations by room temperature tryptophan phosphorescence spectroscopy during denaturation of Escherichia coli alkaline phosphatase. Biophys Chem. 1993 Dec;48(2):281–291. doi: 10.1016/0301-4622(93)85015-a. [DOI] [PubMed] [Google Scholar]
- Mersol J. V., Steel D. G., Gafni A. Quenching of tryptophan phosphorescence in Escherichia coli alkaline phosphatase by long-range transfer mechanisms to external agents in the rapid-diffusion limit. Biochemistry. 1991 Jan 22;30(3):668–675. doi: 10.1021/bi00217a012. [DOI] [PubMed] [Google Scholar]
- Miggiano G. A., Mordente A., Pischiutta M. G., Martorana G. E., Castelli A. Early conformational changes and activity modulation induced by guanidinium chloride on intestinal alkaline phosphatase. Biochem J. 1987 Dec 1;248(2):551–556. doi: 10.1042/bj2480551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morjana N. A., McKeone B. J., Gilbert H. F. Guanidine hydrochloride stabilization of a partially unfolded intermediate during the reversible denaturation of protein disulfide isomerase. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2107–2111. doi: 10.1073/pnas.90.6.2107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moss D. W. Perspectives in alkaline phosphatase research. Clin Chem. 1992 Dec;38(12):2486–2492. [PubMed] [Google Scholar]
- Murphy J. E., Tibbitts T. T., Kantrowitz E. R. Mutations at positions 153 and 328 in Escherichia coli alkaline phosphatase provide insight towards the structure and function of mammalian and yeast alkaline phosphatases. J Mol Biol. 1995 Nov 3;253(4):604–617. doi: 10.1006/jmbi.1995.0576. [DOI] [PubMed] [Google Scholar]
- Nardini M., Dijkstra B. W. Alpha/beta hydrolase fold enzymes: the family keeps growing. Curr Opin Struct Biol. 1999 Dec;9(6):732–737. doi: 10.1016/s0959-440x(99)00037-8. [DOI] [PubMed] [Google Scholar]
- Neet K. E., Timm D. E. Conformational stability of dimeric proteins: quantitative studies by equilibrium denaturation. Protein Sci. 1994 Dec;3(12):2167–2174. doi: 10.1002/pro.5560031202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ollis D. L., Cheah E., Cygler M., Dijkstra B., Frolow F., Franken S. M., Harel M., Remington S. J., Silman I., Schrag J. The alpha/beta hydrolase fold. Protein Eng. 1992 Apr;5(3):197–211. doi: 10.1093/protein/5.3.197. [DOI] [PubMed] [Google Scholar]
- Pace C. N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280. doi: 10.1016/0076-6879(86)31045-0. [DOI] [PubMed] [Google Scholar]
- PetitClerc C. Quantitative fractionation of alkaline phosphatase isoenzymes according to their thermostability. Clin Chem. 1976 Jan;22(1):42–48. [PubMed] [Google Scholar]
- Privalov P. L. Intermediate states in protein folding. J Mol Biol. 1996 May 24;258(5):707–725. doi: 10.1006/jmbi.1996.0280. [DOI] [PubMed] [Google Scholar]
- Ruddon R. W., Bedows E. Assisted protein folding. J Biol Chem. 1997 Feb 7;272(6):3125–3128. doi: 10.1074/jbc.272.6.3125. [DOI] [PubMed] [Google Scholar]
- Sakiyama T., Robinson J. C., Chou J. Y. Characterization of alkaline phosphatases from human first trimester placentas. J Biol Chem. 1979 Feb 10;254(3):935–938. [PubMed] [Google Scholar]
- Santoro M. M., Bolen D. W. Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. Biochemistry. 1988 Oct 18;27(21):8063–8068. doi: 10.1021/bi00421a014. [DOI] [PubMed] [Google Scholar]
- Sarkar S. N., Ghosh N. Reversible unfolding of Escherichia coli alkaline phosphatase: active site can be reconstituted by a number of pathways. Arch Biochem Biophys. 1996 Jun 1;330(1):174–180. doi: 10.1006/abbi.1996.0239. [DOI] [PubMed] [Google Scholar]
- Schindler T., Herrler M., Marahiel M. A., Schmid F. X. Extremely rapid protein folding in the absence of intermediates. Nat Struct Biol. 1995 Aug;2(8):663–673. doi: 10.1038/nsb0895-663. [DOI] [PubMed] [Google Scholar]
- Somogyi B., Papp S., Rosenberg A., Seres I., Matkó J., Welch G. R., Nagy P. A double-quenching method for studying protein dynamics: separation of the fluorescence quenching parameters characteristic of solvent-exposed and solvent-masked fluorophors. Biochemistry. 1985 Nov 5;24(23):6674–6679. doi: 10.1021/bi00344a056. [DOI] [PubMed] [Google Scholar]
- Sosnick T. R., Mayne L., Hiller R., Englander S. W. The barriers in protein folding. Nat Struct Biol. 1994 Mar;1(3):149–156. doi: 10.1038/nsb0394-149. [DOI] [PubMed] [Google Scholar]
- Sreerama N., Woody R. W. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem. 2000 Dec 15;287(2):252–260. doi: 10.1006/abio.2000.4880. [DOI] [PubMed] [Google Scholar]
- Stec B., Holtz K. M., Kantrowitz E. R. A revised mechanism for the alkaline phosphatase reaction involving three metal ions. J Mol Biol. 2000 Jun 23;299(5):1303–1311. doi: 10.1006/jmbi.2000.3799. [DOI] [PubMed] [Google Scholar]
- Strambini G. B. Quenching of alkaline phosphatase phosphorescence by O2 and NO. Evidence for inflexible regions of protein structure. Biophys J. 1987 Jul;52(1):23–28. doi: 10.1016/S0006-3495(87)83184-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Subramaniam V., Bergenhem N. C., Gafni A., Steel D. G. Phosphorescence reveals a continued slow annealing of the protein core following reactivation of Escherichia coli alkaline phosphatase. Biochemistry. 1995 Jan 31;34(4):1133–1136. doi: 10.1021/bi00004a005. [DOI] [PubMed] [Google Scholar]
- Sugawara T., Kuwajima K., Sugai S. Folding of staphylococcal nuclease A studied by equilibrium and kinetic circular dichroism spectra. Biochemistry. 1991 Mar 12;30(10):2698–2706. doi: 10.1021/bi00224a018. [DOI] [PubMed] [Google Scholar]
- Sun L., Kantrowitz E. R., Galley W. C. Room temperature phosphorescence study of phosphate binding in Escherichia coli alkaline phosphatase. Eur J Biochem. 1997 Apr 1;245(1):32–39. doi: 10.1111/j.1432-1033.1997.00032.x. [DOI] [PubMed] [Google Scholar]
- Sánchez del Pino M. M., Fersht A. R. Nonsequential unfolding of the alpha/beta barrel protein indole-3-glycerol-phosphate synthase. Biochemistry. 1997 May 6;36(18):5560–5565. doi: 10.1021/bi963133z. [DOI] [PubMed] [Google Scholar]
- Tsai C. J., Kumar S., Ma B., Nussinov R. Folding funnels, binding funnels, and protein function. Protein Sci. 1999 Jun;8(6):1181–1190. doi: 10.1110/ps.8.6.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Hoof V. O., De Broe M. E. Interpretation and clinical significance of alkaline phosphatase isoenzyme patterns. Crit Rev Clin Lab Sci. 1994;31(3):197–293. doi: 10.3109/10408369409084677. [DOI] [PubMed] [Google Scholar]