Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Feb;82(2):558–568. doi: 10.1016/S0006-3495(02)75421-0

Electron transfer kinetics in photosynthetic reaction centers embedded in trehalose glasses: trapping of conformational substates at room temperature.

Gerardo Palazzo 1, Antonia Mallardi 1, Alejandro Hochkoeppler 1, Lorenzo Cordone 1, Giovanni Venturoli 1
PMCID: PMC1301868  PMID: 11806901

Abstract

We report on room temperature electron transfer in the reaction center (RC) complex purified from Rhodobacter sphaeroides. The protein was embedded in trehalose-water systems of different trehalose/water ratios. This enabled us to get new insights on the relationship between RC conformational dynamics and long-range electron transfer. In particular, we measured the kinetics of electron transfer from the primary reduced quinone acceptor (Q(A)(-)) to the primary photo oxidized donor (P(+)), by time-resolved absorption spectroscopy, as a function of the matrix composition. The composition was evaluated either by weighing (liquid samples) or by near infrared spectroscopy (highly viscous or solid glasses). Deconvolution of the observed, nonexponential kinetics required a continuous spectrum of rate constants. The average rate constant (<k> = 8.7 s(-1) in a 28% (w/w) trehalose solution) increases smoothly by increasing the trehalose/water ratio. In solid glasses, at trehalose/water ratios > or = 97%, an abrupt <k> increase is observed (<k> = 26.6 s(-1) in the driest solid sample). A dramatic broadening of the rate distribution function parallels the above sudden <k> increase. Both effects fully revert upon rehydration of the glass. We compared the kinetics observed at room temperature in extensively dried water-trehalose matrices with the ones measured in glycerol-water mixtures at cryogenic temperatures and conclude that, in solid trehalose-water glasses, the thermal fluctuations among conformational substates are inhibited. This was inferred from the large broadening of the rate constant distribution for electron transfer obtained in solid glasses, which was due to the free energy distribution barriers having become quasi static. Accordingly, the RC relaxation from dark-adapted to light-adapted conformation, which follows primary charge separation at room temperature, is progressively hindered over the time scale of P(+)Q(A)(-) charge recombination, upon decreasing the water content. In solid trehalose-water glasses the electron transfer process resulted much more affected than in RC dried in the absence of sugar. This indicated a larger hindering of the internal dynamics in trehalose-coated RC, notwithstanding the larger amount of residual water present in comparison with samples dried in the absence of sugar.

Full Text

The Full Text of this article is available as a PDF (279.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ansari A., Jones C. M., Henry E. R., Hofrichter J., Eaton W. A. The role of solvent viscosity in the dynamics of protein conformational changes. Science. 1992 Jun 26;256(5065):1796–1798. doi: 10.1126/science.1615323. [DOI] [PubMed] [Google Scholar]
  2. Arata H., Parson W. W. Enthalpy and volume changes accompanying electron transfer from P-870 to quinones in Rhodopseudomonas sphaeroides reaction centers. Biochim Biophys Acta. 1981 Jun 12;636(1):70–81. doi: 10.1016/0005-2728(81)90077-3. [DOI] [PubMed] [Google Scholar]
  3. Austin R. H., Beeson K. W., Eisenstein L., Frauenfelder H., Gunsalus I. C. Dynamics of ligand binding to myoglobin. Biochemistry. 1975 Dec 2;14(24):5355–5373. doi: 10.1021/bi00695a021. [DOI] [PubMed] [Google Scholar]
  4. Barron L. D., Hecht L., Wilson G. The lubricant of life: a proposal that solvent water promotes extremely fast conformational fluctuations in mobile heteropolypeptide structure. Biochemistry. 1997 Oct 28;36(43):13143–13147. doi: 10.1021/bi971323j. [DOI] [PubMed] [Google Scholar]
  5. Beechem J. M. Global analysis of biochemical and biophysical data. Methods Enzymol. 1992;210:37–54. doi: 10.1016/0076-6879(92)10004-w. [DOI] [PubMed] [Google Scholar]
  6. Brzezinski P., Andréasson L. E. Trypsin treatment of reaction centers from Rhodobacter sphaeroides in the dark and under illumination: protein structural changes follow charge separation. Biochemistry. 1995 Jun 6;34(22):7498–7506. doi: 10.1021/bi00022a025. [DOI] [PubMed] [Google Scholar]
  7. Clayton R. K. Effects of dehydration on reaction centers from Rhodopseudomonas sphaeroides. Biochim Biophys Acta. 1978 Nov 9;504(2):255–264. doi: 10.1016/0005-2728(78)90174-3. [DOI] [PubMed] [Google Scholar]
  8. Cordone L., Ferrand M., Vitrano E., Zaccai G. Harmonic behavior of trehalose-coated carbon-monoxy-myoglobin at high temperature. Biophys J. 1999 Feb;76(2):1043–1047. doi: 10.1016/S0006-3495(99)77269-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cordone L., Galajda P., Vitrano E., Gassmann A., Ostermann A., Parak F. A reduction of protein specific motions in co-ligated myoglobin embedded in a trehalose glass. Eur Biophys J. 1998;27(2):173–176. doi: 10.1007/s002490050123. [DOI] [PubMed] [Google Scholar]
  10. Cottone G., Cordone L., Ciccotti G. Molecular dynamics simulation of carboxy-myoglobin embedded in a trehalose-water matrix. Biophys J. 2001 Feb;80(2):931–938. doi: 10.1016/S0006-3495(01)76072-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Crowe L. M., Reid D. S., Crowe J. H. Is trehalose special for preserving dry biomaterials? Biophys J. 1996 Oct;71(4):2087–2093. doi: 10.1016/S0006-3495(96)79407-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Debenedetti P. G., Stillinger F. H. Supercooled liquids and the glass transition. Nature. 2001 Mar 8;410(6825):259–267. doi: 10.1038/35065704. [DOI] [PubMed] [Google Scholar]
  13. Farchaus J. W., Wachtveitl J., Mathis P., Oesterhelt D. Tyrosine 162 of the photosynthetic reaction center L-subunit plays a critical role in the cytochrome c2 mediated rereduction of the photooxidized bacteriochlorophyll dimer in Rhodobacter sphaeroides. 1. Site-directed mutagenesis and initial characterization. Biochemistry. 1993 Oct 12;32(40):10885–10893. doi: 10.1021/bi00091a044. [DOI] [PubMed] [Google Scholar]
  14. Frauenfelder H., McMahon B. Dynamics and function of proteins: the search for general concepts. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):4795–4797. doi: 10.1073/pnas.95.9.4795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Frauenfelder H., Parak F., Young R. D. Conformational substates in proteins. Annu Rev Biophys Biophys Chem. 1988;17:451–479. doi: 10.1146/annurev.bb.17.060188.002315. [DOI] [PubMed] [Google Scholar]
  16. Frauenfelder H., Sligar S. G., Wolynes P. G. The energy landscapes and motions of proteins. Science. 1991 Dec 13;254(5038):1598–1603. doi: 10.1126/science.1749933. [DOI] [PubMed] [Google Scholar]
  17. Gast P., Hemelrijk P. W., Van Gorkom H. J., Hoff A. J. The association of different detergents with the photosynthetic reaction center protein of Rhodobacter sphaeroides R26 and the effects on its photochemistry. Eur J Biochem. 1996 Aug 1;239(3):805–809. doi: 10.1111/j.1432-1033.1996.0805u.x. [DOI] [PubMed] [Google Scholar]
  18. Graige M. S., Feher G., Okamura M. Y. Conformational gating of the electron transfer reaction QA-.QB --> QAQB-. in bacterial reaction centers of Rhodobacter sphaeroides determined by a driving force assay. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11679–11684. doi: 10.1073/pnas.95.20.11679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gray K. A., Farchaus J. W., Wachtveitl J., Breton J., Oesterhelt D. Initial characterization of site-directed mutants of tyrosine M210 in the reaction centre of Rhodobacter sphaeroides. EMBO J. 1990 Jul;9(7):2061–2070. doi: 10.1002/j.1460-2075.1990.tb07373.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hagen S. J., Hofrichter J., Eaton W. A. Protein reaction kinetics in a room-temperature glass. Science. 1995 Aug 18;269(5226):959–962. doi: 10.1126/science.7638618. [DOI] [PubMed] [Google Scholar]
  21. Kleinfeld D., Okamura M. Y., Feher G. Electron-transfer kinetics in photosynthetic reaction centers cooled to cryogenic temperatures in the charge-separated state: evidence for light-induced structural changes. Biochemistry. 1984 Nov 20;23(24):5780–5786. doi: 10.1021/bi00319a017. [DOI] [PubMed] [Google Scholar]
  22. Klibanov A. M. Improving enzymes by using them in organic solvents. Nature. 2001 Jan 11;409(6817):241–246. doi: 10.1038/35051719. [DOI] [PubMed] [Google Scholar]
  23. Kálmán L., Maróti P. Conformation-activated protonation in reaction centers of the photosynthetic bacterium Rhodobacter sphaeroides. Biochemistry. 1997 Dec 9;36(49):15269–15276. doi: 10.1021/bi971882q. [DOI] [PubMed] [Google Scholar]
  24. Leslie S. B., Israeli E., Lighthart B., Crowe J. H., Crowe L. M. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol. 1995 Oct;61(10):3592–3597. doi: 10.1128/aem.61.10.3592-3597.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Makinen M. W., Houtchens R. A., Caughey W. S. Structure of carboxymyoglobin in crystals and in solution. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6042–6046. doi: 10.1073/pnas.76.12.6042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mauzerall D. C., Gunner M. R., Zhang J. W. Volume contraction on photoexcitation of the reaction center from Rhodobacter sphaeroides R-26: internal probe of dielectrics. Biophys J. 1995 Jan;68(1):275–280. doi: 10.1016/S0006-3495(95)80185-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. McMahon B. H., Müller J. D., Wraight C. A., Nienhaus G. U. Electron transfer and protein dynamics in the photosynthetic reaction center. Biophys J. 1998 May;74(5):2567–2587. doi: 10.1016/S0006-3495(98)77964-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Okamura M. Y., Isaacson R. A., Feher G. Primary acceptor in bacterial photosynthesis: obligatory role of ubiquinone in photoactive reaction centers of Rhodopseudomonas spheroides. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3491–3495. doi: 10.1073/pnas.72.9.3491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Palazzo G., Mallardi A., Giustini M., Berti D., Venturoli G. Cumulant analysis of charge recombination kinetics in bacterial reaction centers reconstituted into lipid vesicles. Biophys J. 2000 Sep;79(3):1171–1179. doi: 10.1016/S0006-3495(00)76371-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rampp M., Buttersack C., Lüdemann H. D. c,T-dependence of the viscosity and the self-diffusion coefficients in some aqueous carbohydrate solutions. Carbohydr Res. 2000 Oct 6;328(4):561–572. doi: 10.1016/s0008-6215(00)00141-5. [DOI] [PubMed] [Google Scholar]
  31. Stowell M. H., McPhillips T. M., Rees D. C., Soltis S. M., Abresch E., Feher G. Light-induced structural changes in photosynthetic reaction center: implications for mechanism of electron-proton transfer. Science. 1997 May 2;276(5313):812–816. doi: 10.1126/science.276.5313.812. [DOI] [PubMed] [Google Scholar]
  32. Uritani M., Takai M., Yoshinaga K. Protective effect of disaccharides on restriction endonucleases during drying under vacuum. J Biochem. 1995 Apr;117(4):774–779. doi: 10.1093/oxfordjournals.jbchem.a124775. [DOI] [PubMed] [Google Scholar]
  33. Vojtechovský J., Chu K., Berendzen J., Sweet R. M., Schlichting I. Crystal structures of myoglobin-ligand complexes at near-atomic resolution. Biophys J. 1999 Oct;77(4):2153–2174. doi: 10.1016/S0006-3495(99)77056-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Xu Q., Gunner M. R. Trapping conformational intermediate states in the reaction center protein from photosynthetic bacteria. Biochemistry. 2001 Mar 13;40(10):3232–3241. doi: 10.1021/bi002326q. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES