Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Feb;82(2):605–617. doi: 10.1016/S0006-3495(02)75425-8

Clamped-filament elongation model for actin-based motors.

Richard B Dickinson 1, Daniel L Purich 1
PMCID: PMC1301872  PMID: 11806905

Abstract

Although actin-based motility drives cell crawling and intracellular locomotion of organelles and certain pathogens, the underlying mechanism of force generation remains a mystery. Recent experiments demonstrated that Listeria exhibit episodes of 5.4-nm stepwise motion corresponding to the periodicity of the actin filament subunits, and extremely small positional fluctuations during the intermittent pauses [S. C. Kuo and J. L. McGrath. 2000. Nature. 407:1026-1029]. These findings suggest that motile bacteria remain firmly bound to actin filament ends as they elongate, a behavior that appears to rule out previous models for actin-based motility. We propose and analyze a new mechanochemical model (called the "Lock, Load & Fire" mechanism) for force generation by means of affinity-modulated, clamped-filament elongation. During the locking step, the filament's terminal ATP-containing subunit binds tightly to a clamp situated on the surface of a motile object; in the loading step, actin.ATP monomer(s) bind to the filament end, an event that triggers the firing step, wherein ATP hydrolysis on the clamped subunit attenuates the filament's affinity for the clamp. This last step initiates translocation of the new ATP-containing terminus to the clamp, whereupon another cycle begins anew. This model explains how surface-tethered filaments can grow while exerting flexural or tensile force on the motile surface. Moreover, stochastic simulations of the model reproduce the signature motions of Listeria. This elongation motor, which we term actoclampin, exploits actin's intrinsic ATPase activity to provide a simple, high-fidelity enzymatic reaction cycle for force production that does not require elongating filaments to dissociate from the motile surface. This mechanism may operate whenever actin polymerization is called upon to generate the forces that drive cell crawling or intracellular organelle motility.

Full Text

The Full Text of this article is available as a PDF (498.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angelastro J. M., Purich D. L. Phosphorylation states of actin filament adenine nucleotides in detergent-extracted neuronal cytoskeletal fractions. Biochem Biophys Res Commun. 1994 Jun 30;201(3):1490–1494. doi: 10.1006/bbrc.1994.1872. [DOI] [PubMed] [Google Scholar]
  2. Bachmann C., Fischer L., Walter U., Reinhard M. The EVH2 domain of the vasodilator-stimulated phosphoprotein mediates tetramerization, F-actin binding, and actin bundle formation. J Biol Chem. 1999 Aug 13;274(33):23549–23557. doi: 10.1074/jbc.274.33.23549. [DOI] [PubMed] [Google Scholar]
  3. Bloom L. B., Turner J., Kelman Z., Beechem J. M., O'Donnell M., Goodman M. F. Dynamics of loading the beta sliding clamp of DNA polymerase III onto DNA. J Biol Chem. 1996 Nov 29;271(48):30699–30708. doi: 10.1074/jbc.271.48.30699. [DOI] [PubMed] [Google Scholar]
  4. Cooke R. The bound nucleotide of actin. J Supramol Struct. 1975;3(2):146–153. doi: 10.1002/jss.400030207. [DOI] [PubMed] [Google Scholar]
  5. Cooke R. The role of the bound nucleotide in the polymerization of actin. Biochemistry. 1975 Jul 15;14(14):3250–3256. doi: 10.1021/bi00685a035. [DOI] [PubMed] [Google Scholar]
  6. Dabiri G. A., Sanger J. M., Portnoy D. A., Southwick F. S. Listeria monocytogenes moves rapidly through the host-cell cytoplasm by inducing directional actin assembly. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6068–6072. doi: 10.1073/pnas.87.16.6068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Frischknecht F., Moreau V., Röttger S., Gonfloni S., Reckmann I., Superti-Furga G., Way M. Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature. 1999 Oct 28;401(6756):926–929. doi: 10.1038/44860. [DOI] [PubMed] [Google Scholar]
  8. Gertler F. B., Comer A. R., Juang J. L., Ahern S. M., Clark M. J., Liebl E. C., Hoffmann F. M. enabled, a dosage-sensitive suppressor of mutations in the Drosophila Abl tyrosine kinase, encodes an Abl substrate with SH3 domain-binding properties. Genes Dev. 1995 Mar 1;9(5):521–533. doi: 10.1101/gad.9.5.521. [DOI] [PubMed] [Google Scholar]
  9. Gittes F., Mickey B., Nettleton J., Howard J. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J Cell Biol. 1993 Feb;120(4):923–934. doi: 10.1083/jcb.120.4.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Higuchi H., Yanagida T., Goldman Y. E. Compliance of thin filaments in skinned fibers of rabbit skeletal muscle. Biophys J. 1995 Sep;69(3):1000–1010. doi: 10.1016/S0006-3495(95)79975-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hájková L., Nyman T., Lindberg U., Karlsson R. Effects of cross-linked profilin:beta/gamma-actin on the dynamics of the microfilament system in cultured cells. Exp Cell Res. 2000 Apr 10;256(1):112–121. doi: 10.1006/excr.1999.4786. [DOI] [PubMed] [Google Scholar]
  12. Janmey P. A., Hvidt S., Oster G. F., Lamb J., Stossel T. P., Hartwig J. H. Effect of ATP on actin filament stiffness. Nature. 1990 Sep 6;347(6288):95–99. doi: 10.1038/347095a0. [DOI] [PubMed] [Google Scholar]
  13. Karr T. L., Podrasky A. E., Purich D. L. Participation of guanine nucleotides in nucleation and elongation steps of microtubule assembly. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5475–5479. doi: 10.1073/pnas.76.11.5475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Khan S., Sheetz M. P. Force effects on biochemical kinetics. Annu Rev Biochem. 1997;66:785–805. doi: 10.1146/annurev.biochem.66.1.785. [DOI] [PubMed] [Google Scholar]
  15. Kuo S. C., McGrath J. L. Steps and fluctuations of Listeria monocytogenes during actin-based motility. Nature. 2000 Oct 26;407(6807):1026–1029. doi: 10.1038/35039544. [DOI] [PubMed] [Google Scholar]
  16. Kuriyan J., O'Donnell M. Sliding clamps of DNA polymerases. J Mol Biol. 1993 Dec 20;234(4):915–925. doi: 10.1006/jmbi.1993.1644. [DOI] [PubMed] [Google Scholar]
  17. Laine R. O., Zeile W., Kang F., Purich D. L., Southwick F. S. Vinculin proteolysis unmasks an ActA homolog for actin-based Shigella motility. J Cell Biol. 1997 Sep 22;138(6):1255–1264. doi: 10.1083/jcb.138.6.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lindberg U., Höglund A. S., Karlsson R. On the ultrastructural organization of the microfilament system and the possible role of profilactin. Biochimie. 1981 Apr;63(4):307–323. doi: 10.1016/s0300-9084(81)80119-8. [DOI] [PubMed] [Google Scholar]
  19. MacNeal R. K., Purich D. L. Stoichiometry and role of GTP hydrolysis in bovine neurotubule assembly. J Biol Chem. 1978 Jul 10;253(13):4683–4687. [PubMed] [Google Scholar]
  20. McClure W. R., Chow Y. The kinetics and processivity of nucleic acid polymerases. Methods Enzymol. 1980;64:277–297. doi: 10.1016/s0076-6879(80)64013-0. [DOI] [PubMed] [Google Scholar]
  21. Merkel R., Nassoy P., Leung A., Ritchie K., Evans E. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature. 1999 Jan 7;397(6714):50–53. doi: 10.1038/16219. [DOI] [PubMed] [Google Scholar]
  22. Mimuro H., Suzuki T., Suetsugu S., Miki H., Takenawa T., Sasakawa C. Profilin is required for sustaining efficient intra- and intercellular spreading of Shigella flexneri. J Biol Chem. 2000 Sep 15;275(37):28893–28901. doi: 10.1074/jbc.M003882200. [DOI] [PubMed] [Google Scholar]
  23. Mogilner A., Oster G. Cell motility driven by actin polymerization. Biophys J. 1996 Dec;71(6):3030–3045. doi: 10.1016/S0006-3495(96)79496-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Niebuhr K., Ebel F., Frank R., Reinhard M., Domann E., Carl U. D., Walter U., Gertler F. B., Wehland J., Chakraborty T. A novel proline-rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the Ena/VASP family. EMBO J. 1997 Sep 1;16(17):5433–5444. doi: 10.1093/emboj/16.17.5433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Noireaux V., Golsteyn R. M., Friederich E., Prost J., Antony C., Louvard D., Sykes C. Growing an actin gel on spherical surfaces. Biophys J. 2000 Mar;78(3):1643–1654. doi: 10.1016/S0006-3495(00)76716-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. O'Brien E. T., Voter W. A., Erickson H. P. GTP hydrolysis during microtubule assembly. Biochemistry. 1987 Jun 30;26(13):4148–4156. doi: 10.1021/bi00387a061. [DOI] [PubMed] [Google Scholar]
  27. Otterbein L. R., Graceffa P., Dominguez R. The crystal structure of uncomplexed actin in the ADP state. Science. 2001 Jul 27;293(5530):708–711. doi: 10.1126/science.1059700. [DOI] [PubMed] [Google Scholar]
  28. Peskin C. S., Odell G. M., Oster G. F. Cellular motions and thermal fluctuations: the Brownian ratchet. Biophys J. 1993 Jul;65(1):316–324. doi: 10.1016/S0006-3495(93)81035-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pollard T. D. Assembly and dynamics of the actin filament system in nonmuscle cells. J Cell Biochem. 1986;31(2):87–95. doi: 10.1002/jcb.240310202. [DOI] [PubMed] [Google Scholar]
  30. Pollard T. D., Blanchoin L., Mullins R. D. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct. 2000;29:545–576. doi: 10.1146/annurev.biophys.29.1.545. [DOI] [PubMed] [Google Scholar]
  31. Pollard T. D. Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. J Cell Biol. 1986 Dec;103(6 Pt 2):2747–2754. doi: 10.1083/jcb.103.6.2747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Purich D. L., Angelastro J. M. Microtubule dynamics: bioenergetics and control. Adv Enzymol Relat Areas Mol Biol. 1994;69:121–154. doi: 10.1002/9780470123157.ch4. [DOI] [PubMed] [Google Scholar]
  33. Purich D. L. Enzyme catalysis: a new definition accounting for noncovalent substrate- and product-like states. Trends Biochem Sci. 2001 Jul;26(7):417–421. doi: 10.1016/s0968-0004(01)01880-1. [DOI] [PubMed] [Google Scholar]
  34. Purich D. L., Southwick F. S. Energetics of nucleotide hydrolysis in polymer assembly/disassembly: the cases of actin and tubulin. Methods Enzymol. 1999;308:93–111. doi: 10.1016/s0076-6879(99)08007-6. [DOI] [PubMed] [Google Scholar]
  35. Rayment I., Smith C., Yount R. G. The active site of myosin. Annu Rev Physiol. 1996;58:671–702. doi: 10.1146/annurev.ph.58.030196.003323. [DOI] [PubMed] [Google Scholar]
  36. Reinhard M., Jarchau T., Walter U. Actin-based motility: stop and go with Ena/VASP proteins. Trends Biochem Sci. 2001 Apr;26(4):243–249. doi: 10.1016/s0968-0004(00)01785-0. [DOI] [PubMed] [Google Scholar]
  37. Scholey J. M., Porter M. E., Grissom P. M., McIntosh J. R. Identification of kinesin in sea urchin eggs, and evidence for its localization in the mitotic spindle. Nature. 1985 Dec 5;318(6045):483–486. doi: 10.1038/318483a0. [DOI] [PubMed] [Google Scholar]
  38. Sechi A. S., Wehland J., Small J. V. The isolated comet tail pseudopodium of Listeria monocytogenes: a tail of two actin filament populations, long and axial and short and random. J Cell Biol. 1997 Apr 7;137(1):155–167. doi: 10.1083/jcb.137.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Southwick F. S., Purich D. L. Intracellular pathogenesis of listeriosis. N Engl J Med. 1996 Mar 21;334(12):770–776. doi: 10.1056/NEJM199603213341206. [DOI] [PubMed] [Google Scholar]
  40. Stossel T. P. On the crawling of animal cells. Science. 1993 May 21;260(5111):1086–1094. doi: 10.1126/science.8493552. [DOI] [PubMed] [Google Scholar]
  41. Suzuki T., Saga S., Sasakawa C. Functional analysis of Shigella VirG domains essential for interaction with vinculin and actin-based motility. J Biol Chem. 1996 Sep 6;271(36):21878–21885. doi: 10.1074/jbc.271.36.21878. [DOI] [PubMed] [Google Scholar]
  42. Vale R. D. Switches, latches, and amplifiers: common themes of G proteins and molecular motors. J Cell Biol. 1996 Oct;135(2):291–302. doi: 10.1083/jcb.135.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wegner A., Engel J. Kinetics of the cooperative association of actin to actin filaments. Biophys Chem. 1975 Jul;3(3):215–225. doi: 10.1016/0301-4622(75)80013-5. [DOI] [PubMed] [Google Scholar]
  44. Wegner A. Treadmilling of actin at physiological salt concentrations. An analysis of the critical concentrations of actin filaments. J Mol Biol. 1982 Nov 15;161(4):607–615. doi: 10.1016/0022-2836(82)90411-9. [DOI] [PubMed] [Google Scholar]
  45. Zeile W. L., Condit R. C., Lewis J. I., Purich D. L., Southwick F. S. Vaccinia locomotion in host cells: evidence for the universal involvement of actin-based motility sequences ABM-1 and ABM-2. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13917–13922. doi: 10.1073/pnas.95.23.13917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Zeile W. L., Purich D. L., Southwick F. S. Recognition of two classes of oligoproline sequences in profilin-mediated acceleration of actin-based Shigella motility. J Cell Biol. 1996 Apr;133(1):49–59. doi: 10.1083/jcb.133.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES