Abstract
The metabolic activity of chondrocytes in articular cartilage is influenced by alterations in the osmotic environment of the tissue, which occur secondary to mechanical compression. The mechanism by which osmotic stress modulates cell physiology is not fully understood and may involve changes in the physical properties of the membrane or the cytoskeleton. The goal of this study was to determine the effect of the osmotic environment on the mechanical and physical properties of chondrocytes. In isoosmotic medium, chondrocytes exhibited a spherical shape with numerous membrane ruffles. Normalized cell volume was found to be linearly related to the reciprocal of the extracellular osmolality (Boyle van't Hoff relationship) with an osmotically active intracellular water fraction of 61%. In deionized water, chondrocytes swelled monotonically until lysis at a mean apparent membrane area 234 +/- 49% of the initial area. Biomechanically, chondrocytes exhibited viscoelastic solid behavior. The instantaneous and equilibrium elastic moduli and the apparent viscosity of the cell were significantly decreased by hypoosmotic stress, but were unchanged by hyperosmotic stress. Changes in the viscoelastic properties were paralleled by the rapid dissociation and remodeling of cortical actin in response to hypoosmotic stress. These findings indicate that the physicochemical environment has a strong influence on the viscoelastic and physical properties of the chondrocyte, potentially through alterations in the actin cytoskeleton.
Full Text
The Full Text of this article is available as a PDF (281.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Borghetti P., Della Salda L., De Angelis E., Maltarello M. C., Petronini P. G., Cabassi E., Marcato P. S., Maraldi N. M., Borghetti A. F. Adaptive cellular response to osmotic stress in pig articular chondrocytes. Tissue Cell. 1995 Apr;27(2):173–183. doi: 10.1016/s0040-8166(95)80020-4. [DOI] [PubMed] [Google Scholar]
- Bush P. G., Hall A. C. Regulatory volume decrease (RVD) by isolated and in situ bovine articular chondrocytes. J Cell Physiol. 2001 Jun;187(3):304–314. doi: 10.1002/jcp.1077. [DOI] [PubMed] [Google Scholar]
- Cornet M., Isobe Y., Lemanski L. F. Effects of anisosmotic conditions on the cytoskeletal architecture of cultured PC12 cells. J Morphol. 1994 Dec;222(3):269–286. doi: 10.1002/jmor.1052220305. [DOI] [PubMed] [Google Scholar]
- Devireddy R. V., Raha D., Bischof J. C. Measurement of water transport during freezing in cell suspensions using a differential scanning calorimeter. Cryobiology. 1998 Mar;36(2):124–155. doi: 10.1006/cryo.1997.2071. [DOI] [PubMed] [Google Scholar]
- Erickson G. R., Alexopoulos L. G., Guilak F. Hyper-osmotic stress induces volume change and calcium transients in chondrocytes by transmembrane, phospholipid, and G-protein pathways. J Biomech. 2001 Dec;34(12):1527–1535. doi: 10.1016/s0021-9290(01)00156-7. [DOI] [PubMed] [Google Scholar]
- Evans E. A., Hochmuth R. M. Membrane viscoelasticity. Biophys J. 1976 Jan;16(1):1–11. doi: 10.1016/S0006-3495(76)85658-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans E. A. Structure and deformation properties of red blood cells: concepts and quantitative methods. Methods Enzymol. 1989;173:3–35. doi: 10.1016/s0076-6879(89)73003-2. [DOI] [PubMed] [Google Scholar]
- Evans E., Yeung A. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys J. 1989 Jul;56(1):151–160. doi: 10.1016/S0006-3495(89)82660-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guilak F. Compression-induced changes in the shape and volume of the chondrocyte nucleus. J Biomech. 1995 Dec;28(12):1529–1541. doi: 10.1016/0021-9290(95)00100-x. [DOI] [PubMed] [Google Scholar]
- Guilak F., Mow V. C. The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage. J Biomech. 2000 Dec;33(12):1663–1673. [PubMed] [Google Scholar]
- Guilak F., Ratcliffe A., Lane N., Rosenwasser M. P., Mow V. C. Mechanical and biochemical changes in the superficial zone of articular cartilage in canine experimental osteoarthritis. J Orthop Res. 1994 Jul;12(4):474–484. doi: 10.1002/jor.1100120404. [DOI] [PubMed] [Google Scholar]
- Guilak F., Ratcliffe A., Mow V. C. Chondrocyte deformation and local tissue strain in articular cartilage: a confocal microscopy study. J Orthop Res. 1995 May;13(3):410–421. doi: 10.1002/jor.1100130315. [DOI] [PubMed] [Google Scholar]
- Guilak F. The deformation behavior and viscoelastic properties of chondrocytes in articular cartilage. Biorheology. 2000;37(1-2):27–44. [PubMed] [Google Scholar]
- Guilak F., Zell R. A., Erickson G. R., Grande D. A., Rubin C. T., McLeod K. J., Donahue H. J. Mechanically induced calcium waves in articular chondrocytes are inhibited by gadolinium and amiloride. J Orthop Res. 1999 May;17(3):421–429. doi: 10.1002/jor.1100170319. [DOI] [PubMed] [Google Scholar]
- Haider M. A., Guilak F. An axisymmetric boundary integral model for incompressible linear viscoelasticity: application to the micropipette aspiration contact problem. J Biomech Eng. 2000 Jun;122(3):236–244. doi: 10.1115/1.429654. [DOI] [PubMed] [Google Scholar]
- Hall A. C. Volume-sensitive taurine transport in bovine articular chondrocytes. J Physiol. 1995 May 1;484(Pt 3):755–766. doi: 10.1113/jphysiol.1995.sp020701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hardingham T. E., Fosang A. J., Dudhia J. The structure, function and turnover of aggrecan, the large aggregating proteoglycan from cartilage. Eur J Clin Chem Clin Biochem. 1994 Apr;32(4):249–257. [PubMed] [Google Scholar]
- Heinegård D., Oldberg A. Structure and biology of cartilage and bone matrix noncollagenous macromolecules. FASEB J. 1989 Jul;3(9):2042–2051. doi: 10.1096/fasebj.3.9.2663581. [DOI] [PubMed] [Google Scholar]
- Heinrich V., Waugh R. E. A piconewton force transducer and its application to measurement of the bending stiffness of phospholipid membranes. Ann Biomed Eng. 1996 Sep-Oct;24(5):595–605. doi: 10.1007/BF02684228. [DOI] [PubMed] [Google Scholar]
- Hochmuth R. M. Micropipette aspiration of living cells. J Biomech. 2000 Jan;33(1):15–22. doi: 10.1016/s0021-9290(99)00175-x. [DOI] [PubMed] [Google Scholar]
- Jones W. R., Ting-Beall H. P., Lee G. M., Kelley S. S., Hochmuth R. M., Guilak F. Alterations in the Young's modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage. J Biomech. 1999 Feb;32(2):119–127. doi: 10.1016/s0021-9290(98)00166-3. [DOI] [PubMed] [Google Scholar]
- Kempson G. E., Muir H., Pollard C., Tuke M. The tensile properties of the cartilage of human femoral condyles related to the content of collagen and glycosaminoglycans. Biochim Biophys Acta. 1973 Feb 28;297(2):456–472. doi: 10.1016/0304-4165(73)90093-7. [DOI] [PubMed] [Google Scholar]
- Lai W. M., Hou J. S., Mow V. C. A triphasic theory for the swelling and deformation behaviors of articular cartilage. J Biomech Eng. 1991 Aug;113(3):245–258. doi: 10.1115/1.2894880. [DOI] [PubMed] [Google Scholar]
- Lee D. A., Knight M. M., Bolton J. F., Idowu B. D., Kayser M. V., Bader D. L. Chondrocyte deformation within compressed agarose constructs at the cellular and sub-cellular levels. J Biomech. 2000 Jan;33(1):81–95. doi: 10.1016/s0021-9290(99)00160-8. [DOI] [PubMed] [Google Scholar]
- Low S. Y., Rennie M. J., Taylor P. M. Involvement of integrins and the cytoskeleton in modulation of skeletal muscle glycogen synthesis by changes in cell volume. FEBS Lett. 1997 Nov 3;417(1):101–103. doi: 10.1016/s0014-5793(97)01264-7. [DOI] [PubMed] [Google Scholar]
- Maroudas A., Ziv I., Weisman N., Venn M. Studies of hydration and swelling pressure in normal and osteoarthritic cartilage. Biorheology. 1985;22(2):159–169. doi: 10.3233/bir-1985-22206. [DOI] [PubMed] [Google Scholar]
- McCarthy D. A., Pell B. K., Holburn C. M., Moore S. R., Perry J. D., Goddard D. H., Kirk A. P. A tannic acid based preparation procedure which enables leucocytes to be examined subsequently by either SEM or TEM. J Microsc. 1985 Jan;137(Pt 1):57–64. doi: 10.1111/j.1365-2818.1985.tb02561.x. [DOI] [PubMed] [Google Scholar]
- McGann L. E., Stevenson M., Muldrew K., Schachar N. Kinetics of osmotic water movement in chondrocytes isolated from articular cartilage and applications to cryopreservation. J Orthop Res. 1988;6(1):109–115. doi: 10.1002/jor.1100060114. [DOI] [PubMed] [Google Scholar]
- Mobasheri A., Mobasheri R., Francis M. J., Trujillo E., Alvarez de la Rosa D., Martín-Vasallo P. Ion transport in chondrocytes: membrane transporters involved in intracellular ion homeostasis and the regulation of cell volume, free [Ca2+] and pH. Histol Histopathol. 1998 Jul;13(3):893–910. doi: 10.14670/HH-13.893. [DOI] [PubMed] [Google Scholar]
- Mow V. C., Ratcliffe A., Poole A. R. Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials. 1992;13(2):67–97. doi: 10.1016/0142-9612(92)90001-5. [DOI] [PubMed] [Google Scholar]
- Pedersen S. F., Mills J. W., Hoffmann E. K. Role of the F-actin cytoskeleton in the RVD and RVI processes in Ehrlich ascites tumor cells. Exp Cell Res. 1999 Oct 10;252(1):63–74. doi: 10.1006/excr.1999.4615. [DOI] [PubMed] [Google Scholar]
- Richelme F., Benoliel A. M., Bongrand P. Dynamic study of cell mechanical and structural responses to rapid changes of calcium level. Cell Motil Cytoskeleton. 2000 Feb;45(2):93–105. doi: 10.1002/(SICI)1097-0169(200002)45:2<93::AID-CM2>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
- Sarkadi B., Parker J. C. Activation of ion transport pathways by changes in cell volume. Biochim Biophys Acta. 1991 Dec 12;1071(4):407–427. doi: 10.1016/0304-4157(91)90005-h. [DOI] [PubMed] [Google Scholar]
- Sato M., Theret D. P., Wheeler L. T., Ohshima N., Nerem R. M. Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties. J Biomech Eng. 1990 Aug;112(3):263–268. doi: 10.1115/1.2891183. [DOI] [PubMed] [Google Scholar]
- Sung K. L., Schmid-Schönbein G. W., Skalak R., Schuessler G. B., Usami S., Chien S. Influence of physicochemical factors on rheology of human neutrophils. Biophys J. 1982 Jul;39(1):101–106. doi: 10.1016/S0006-3495(82)84495-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Theret D. P., Levesque M. J., Sato M., Nerem R. M., Wheeler L. T. The application of a homogeneous half-space model in the analysis of endothelial cell micropipette measurements. J Biomech Eng. 1988 Aug;110(3):190–199. doi: 10.1115/1.3108430. [DOI] [PubMed] [Google Scholar]
- Ting-Beall H. P., Needham D., Hochmuth R. M. Volume and osmotic properties of human neutrophils. Blood. 1993 May 15;81(10):2774–2780. [PubMed] [Google Scholar]
- Trickey W. R., Lee G. M., Guilak F. Viscoelastic properties of chondrocytes from normal and osteoarthritic human cartilage. J Orthop Res. 2000 Nov;18(6):891–898. doi: 10.1002/jor.1100180607. [DOI] [PubMed] [Google Scholar]
- Urban J. P., Hall A. C., Gehl K. A. Regulation of matrix synthesis rates by the ionic and osmotic environment of articular chondrocytes. J Cell Physiol. 1993 Feb;154(2):262–270. doi: 10.1002/jcp.1041540208. [DOI] [PubMed] [Google Scholar]
- Wollweber L., Stracke R., Gothe U. The use of a simple method to avoid cell shrinkage during SEM preparation. J Microsc. 1981 Feb;121(Pt 2):185–189. doi: 10.1111/j.1365-2818.1981.tb01211.x. [DOI] [PubMed] [Google Scholar]
- Wong M., Wuethrich P., Buschmann M. D., Eggli P., Hunziker E. Chondrocyte biosynthesis correlates with local tissue strain in statically compressed adult articular cartilage. J Orthop Res. 1997 Mar;15(2):189–196. doi: 10.1002/jor.1100150206. [DOI] [PubMed] [Google Scholar]
- de Freitas R. C., Diller K. R., Lakey J. R., Rajotte R. V. Osmotic behavior and transport properties of human islets in a dimethyl sulfoxide solution. Cryobiology. 1997 Nov;35(3):230–239. doi: 10.1006/cryo.1997.2045. [DOI] [PubMed] [Google Scholar]