Abstract
Calcium (Ca(2+)) modulates several of the enzymatic pathways that mediate phototransduction in the outer segments of vertebrate rod photoreceptors. Ca(2+) enters the rod outer segment through cationic channels kept open by cyclic GMP (cGMP) and is pumped out by a Na(+)/Ca(2+),K(+) exchanger. Light initiates a biochemical cascade, which leads to closure of the cGMP-gated channels, and a concomitant decline in the concentration of Ca(2+). This decline mediates the recovery from stimulation by light and underlies the adaptation of the cell to background light. The speed with which the decline in the Ca(2+) concentration propagates through the rod outer segment depends on the Ca(2+) diffusion coefficient. We have used the fluorescent Ca(2+) indicator fluo-3 and confocal microscopy to measure the profile of the Ca(2+) concentration after stimulation of the rod photoreceptor by light. From these measurements, we have obtained a value of 15 +/- 1 microm(2)s(-1) for the radial Ca(2+) diffusion coefficient. This value is consistent with the effect of a low-affinity, immobile buffer reported to be present in the rod outer segment (L.Lagnado, L. Cervetto, and P.A. McNaughton, 1992, J. Physiol. 455:111-142) and with a buffering capacity of approximately 20 for rods in darkness(S. Nikonov, N. Engheta, and E.N. Pugh, Jr., 1998, J. Gen. Physiol. 111:7-37). This value suggests that diffusion provides a significant delay for the radial propagation of the decline in the concentration of Ca(2+). Also, because of baffling by the disks, the longitudinal Ca(2+) diffusion coefficient will be in the order of 2 microm(2)s(-1), which is much smaller than the longitudinal cGMP diffusion coefficient (30-60 microm(2)s(-1); ). Therefore, the longitudinal decline of Ca(2+) lags behind the longitudinal spread of excitation by cGMP.
Full Text
The Full Text of this article is available as a PDF (216.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allbritton N. L., Meyer T., Stryer L. Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science. 1992 Dec 11;258(5089):1812–1815. doi: 10.1126/science.1465619. [DOI] [PubMed] [Google Scholar]
- BOWEN W. J., MARTIN H. L. THE DIFFUSION OF ADENOSINE TRIPHOSPHATE THROUGH AQUEOUS SOLUTIONS. Arch Biochem Biophys. 1964 Jul;107:30–36. doi: 10.1016/0003-9861(64)90265-6. [DOI] [PubMed] [Google Scholar]
- Baylor D. A., Lamb T. D., Yau K. W. The membrane current of single rod outer segments. J Physiol. 1979 Mar;288:589–611. [PMC free article] [PubMed] [Google Scholar]
- Baylor D. A., Nunn B. J. Electrical properties of the light-sensitive conductance of rods of the salamander Ambystoma tigrinum. J Physiol. 1986 Feb;371:115–145. doi: 10.1113/jphysiol.1986.sp015964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ebrey T., Koutalos Y. Vertebrate photoreceptors. Prog Retin Eye Res. 2001 Jan;20(1):49–94. doi: 10.1016/s1350-9462(00)00014-8. [DOI] [PubMed] [Google Scholar]
- Escobar A. L., Velez P., Kim A. M., Cifuentes F., Fill M., Vergara J. L. Kinetic properties of DM-nitrophen and calcium indicators: rapid transient response to flash photolysis. Pflugers Arch. 1997 Sep;434(5):615–631. doi: 10.1007/s004240050444. [DOI] [PubMed] [Google Scholar]
- Fain G. L., Matthews H. R., Cornwall M. C., Koutalos Y. Adaptation in vertebrate photoreceptors. Physiol Rev. 2001 Jan;81(1):117–151. doi: 10.1152/physrev.2001.81.1.117. [DOI] [PubMed] [Google Scholar]
- Gabso M., Neher E., Spira M. E. Low mobility of the Ca2+ buffers in axons of cultured Aplysia neurons. Neuron. 1997 Mar;18(3):473–481. doi: 10.1016/s0896-6273(00)81247-7. [DOI] [PubMed] [Google Scholar]
- Gray-Keller M. P., Detwiler P. B. The calcium feedback signal in the phototransduction cascade of vertebrate rods. Neuron. 1994 Oct;13(4):849–861. doi: 10.1016/0896-6273(94)90251-8. [DOI] [PubMed] [Google Scholar]
- Gray-Keller M., Denk W., Shraiman B., Detwiler P. B. Longitudinal spread of second messenger signals in isolated rod outer segments of lizards. J Physiol. 1999 Sep 15;519(Pt 3):679–692. doi: 10.1111/j.1469-7793.1999.0679n.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harkins A. B., Kurebayashi N., Baylor S. M. Resting myoplasmic free calcium in frog skeletal muscle fibers estimated with fluo-3. Biophys J. 1993 Aug;65(2):865–881. doi: 10.1016/S0006-3495(93)81112-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koutalos Y., Brown R. L., Karpen J. W., Yau K. W. Diffusion coefficient of the cyclic GMP analog 8-(fluoresceinyl)thioguanosine 3',5' cyclic monophosphate in the salamander rod outer segment. Biophys J. 1995 Nov;69(5):2163–2167. doi: 10.1016/S0006-3495(95)80090-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koutalos Y., Nakatani K., Yau K. W. Cyclic GMP diffusion coefficient in rod photoreceptor outer segments. Biophys J. 1995 Jan;68(1):373–382. doi: 10.1016/S0006-3495(95)80198-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kushmerick M. J., Podolsky R. J. Ionic mobility in muscle cells. Science. 1969 Dec 5;166(3910):1297–1298. doi: 10.1126/science.166.3910.1297. [DOI] [PubMed] [Google Scholar]
- Lagnado L., Cervetto L., McNaughton P. A. Calcium homeostasis in the outer segments of retinal rods from the tiger salamander. J Physiol. 1992 Sep;455:111–142. doi: 10.1113/jphysiol.1992.sp019293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lamb T. D., McNaughton P. A., Yau K. W. Spatial spread of activation and background desensitization in toad rod outer segments. J Physiol. 1981;319:463–496. doi: 10.1113/jphysiol.1981.sp013921. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCarthy S. T., Younger J. P., Owen W. G. Dynamic, spatially nonuniform calcium regulation in frog rods exposed to light. J Neurophysiol. 1996 Sep;76(3):1991–2004. doi: 10.1152/jn.1996.76.3.1991. [DOI] [PubMed] [Google Scholar]
- Nakatani K., Tamura T., Yau K. W. Light adaptation in retinal rods of the rabbit and two other nonprimate mammals. J Gen Physiol. 1991 Mar;97(3):413–435. doi: 10.1085/jgp.97.3.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nikonov S., Engheta N., Pugh E. N., Jr Kinetics of recovery of the dark-adapted salamander rod photoresponse. J Gen Physiol. 1998 Jan;111(1):7–37. doi: 10.1085/jgp.111.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olson A., Pugh E. N., Jr Diffusion coefficient of cyclic GMP in salamander rod outer segments estimated with two fluorescent probes. Biophys J. 1993 Sep;65(3):1335–1352. doi: 10.1016/S0006-3495(93)81177-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Polans A., Baehr W., Palczewski K. Turned on by Ca2+! The physiology and pathology of Ca(2+)-binding proteins in the retina. Trends Neurosci. 1996 Dec;19(12):547–554. doi: 10.1016/s0166-2236(96)10059-x. [DOI] [PubMed] [Google Scholar]
- Pugh E. N., Jr, Nikonov S., Lamb T. D. Molecular mechanisms of vertebrate photoreceptor light adaptation. Curr Opin Neurobiol. 1999 Aug;9(4):410–418. doi: 10.1016/S0959-4388(99)80062-2. [DOI] [PubMed] [Google Scholar]
- Rispoli G., Sather W. A., Detwiler P. B. Visual transduction in dialysed detached rod outer segments from lizard retina. J Physiol. 1993 Jun;465:513–537. doi: 10.1113/jphysiol.1993.sp019691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sampath A. P., Matthews H. R., Cornwall M. C., Fain G. L. Bleached pigment produces a maintained decrease in outer segment Ca2+ in salamander rods. J Gen Physiol. 1998 Jan;111(1):53–64. doi: 10.1085/jgp.111.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schnetkamp P. P., Li X. B., Basu D. K., Szerencsei R. T. Regulation of free cytosolic Ca2+ concentration in the outer segments of bovine retinal rods by Na-Ca-K exchange measured with fluo-3. I. Efficiency of transport and interactions between cations. J Biol Chem. 1991 Dec 5;266(34):22975–22982. [PubMed] [Google Scholar]
- Schnetkamp P. P., Szerencsei R. T. Intracellular Ca2+ sequestration and release in intact bovine retinal rod outer segments. Role in inactivation of Na-Ca+K exchange. J Biol Chem. 1993 Jun 15;268(17):12449–12457. [PubMed] [Google Scholar]
- Wagner J., Keizer J. Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. Biophys J. 1994 Jul;67(1):447–456. doi: 10.1016/S0006-3495(94)80500-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yau K. W., Nakatani K. Light-induced reduction of cytoplasmic free calcium in retinal rod outer segment. Nature. 1985 Feb 14;313(6003):579–582. doi: 10.1038/313579a0. [DOI] [PubMed] [Google Scholar]
- Zhou Z., Neher E. Mobile and immobile calcium buffers in bovine adrenal chromaffin cells. J Physiol. 1993 Sep;469:245–273. doi: 10.1113/jphysiol.1993.sp019813. [DOI] [PMC free article] [PubMed] [Google Scholar]
- al-Baldawi N. F., Abercrombie R. F. Calcium diffusion coefficient in Myxicola axoplasm. Cell Calcium. 1995 Jun;17(6):422–430. doi: 10.1016/0143-4160(95)90088-8. [DOI] [PubMed] [Google Scholar]