Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Feb;82(2):728–739. doi: 10.1016/S0006-3495(02)75435-0

Calcium diffusion coefficient in rod photoreceptor outer segments.

Kei Nakatani 1, Chunhe Chen 1, Yiannis Koutalos 1
PMCID: PMC1301882  PMID: 11806915

Abstract

Calcium (Ca(2+)) modulates several of the enzymatic pathways that mediate phototransduction in the outer segments of vertebrate rod photoreceptors. Ca(2+) enters the rod outer segment through cationic channels kept open by cyclic GMP (cGMP) and is pumped out by a Na(+)/Ca(2+),K(+) exchanger. Light initiates a biochemical cascade, which leads to closure of the cGMP-gated channels, and a concomitant decline in the concentration of Ca(2+). This decline mediates the recovery from stimulation by light and underlies the adaptation of the cell to background light. The speed with which the decline in the Ca(2+) concentration propagates through the rod outer segment depends on the Ca(2+) diffusion coefficient. We have used the fluorescent Ca(2+) indicator fluo-3 and confocal microscopy to measure the profile of the Ca(2+) concentration after stimulation of the rod photoreceptor by light. From these measurements, we have obtained a value of 15 +/- 1 microm(2)s(-1) for the radial Ca(2+) diffusion coefficient. This value is consistent with the effect of a low-affinity, immobile buffer reported to be present in the rod outer segment (L.Lagnado, L. Cervetto, and P.A. McNaughton, 1992, J. Physiol. 455:111-142) and with a buffering capacity of approximately 20 for rods in darkness(S. Nikonov, N. Engheta, and E.N. Pugh, Jr., 1998, J. Gen. Physiol. 111:7-37). This value suggests that diffusion provides a significant delay for the radial propagation of the decline in the concentration of Ca(2+). Also, because of baffling by the disks, the longitudinal Ca(2+) diffusion coefficient will be in the order of 2 microm(2)s(-1), which is much smaller than the longitudinal cGMP diffusion coefficient (30-60 microm(2)s(-1); ). Therefore, the longitudinal decline of Ca(2+) lags behind the longitudinal spread of excitation by cGMP.

Full Text

The Full Text of this article is available as a PDF (216.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allbritton N. L., Meyer T., Stryer L. Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science. 1992 Dec 11;258(5089):1812–1815. doi: 10.1126/science.1465619. [DOI] [PubMed] [Google Scholar]
  2. BOWEN W. J., MARTIN H. L. THE DIFFUSION OF ADENOSINE TRIPHOSPHATE THROUGH AQUEOUS SOLUTIONS. Arch Biochem Biophys. 1964 Jul;107:30–36. doi: 10.1016/0003-9861(64)90265-6. [DOI] [PubMed] [Google Scholar]
  3. Baylor D. A., Lamb T. D., Yau K. W. The membrane current of single rod outer segments. J Physiol. 1979 Mar;288:589–611. [PMC free article] [PubMed] [Google Scholar]
  4. Baylor D. A., Nunn B. J. Electrical properties of the light-sensitive conductance of rods of the salamander Ambystoma tigrinum. J Physiol. 1986 Feb;371:115–145. doi: 10.1113/jphysiol.1986.sp015964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ebrey T., Koutalos Y. Vertebrate photoreceptors. Prog Retin Eye Res. 2001 Jan;20(1):49–94. doi: 10.1016/s1350-9462(00)00014-8. [DOI] [PubMed] [Google Scholar]
  6. Escobar A. L., Velez P., Kim A. M., Cifuentes F., Fill M., Vergara J. L. Kinetic properties of DM-nitrophen and calcium indicators: rapid transient response to flash photolysis. Pflugers Arch. 1997 Sep;434(5):615–631. doi: 10.1007/s004240050444. [DOI] [PubMed] [Google Scholar]
  7. Fain G. L., Matthews H. R., Cornwall M. C., Koutalos Y. Adaptation in vertebrate photoreceptors. Physiol Rev. 2001 Jan;81(1):117–151. doi: 10.1152/physrev.2001.81.1.117. [DOI] [PubMed] [Google Scholar]
  8. Gabso M., Neher E., Spira M. E. Low mobility of the Ca2+ buffers in axons of cultured Aplysia neurons. Neuron. 1997 Mar;18(3):473–481. doi: 10.1016/s0896-6273(00)81247-7. [DOI] [PubMed] [Google Scholar]
  9. Gray-Keller M. P., Detwiler P. B. The calcium feedback signal in the phototransduction cascade of vertebrate rods. Neuron. 1994 Oct;13(4):849–861. doi: 10.1016/0896-6273(94)90251-8. [DOI] [PubMed] [Google Scholar]
  10. Gray-Keller M., Denk W., Shraiman B., Detwiler P. B. Longitudinal spread of second messenger signals in isolated rod outer segments of lizards. J Physiol. 1999 Sep 15;519(Pt 3):679–692. doi: 10.1111/j.1469-7793.1999.0679n.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harkins A. B., Kurebayashi N., Baylor S. M. Resting myoplasmic free calcium in frog skeletal muscle fibers estimated with fluo-3. Biophys J. 1993 Aug;65(2):865–881. doi: 10.1016/S0006-3495(93)81112-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Koutalos Y., Brown R. L., Karpen J. W., Yau K. W. Diffusion coefficient of the cyclic GMP analog 8-(fluoresceinyl)thioguanosine 3',5' cyclic monophosphate in the salamander rod outer segment. Biophys J. 1995 Nov;69(5):2163–2167. doi: 10.1016/S0006-3495(95)80090-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Koutalos Y., Nakatani K., Yau K. W. Cyclic GMP diffusion coefficient in rod photoreceptor outer segments. Biophys J. 1995 Jan;68(1):373–382. doi: 10.1016/S0006-3495(95)80198-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kushmerick M. J., Podolsky R. J. Ionic mobility in muscle cells. Science. 1969 Dec 5;166(3910):1297–1298. doi: 10.1126/science.166.3910.1297. [DOI] [PubMed] [Google Scholar]
  15. Lagnado L., Cervetto L., McNaughton P. A. Calcium homeostasis in the outer segments of retinal rods from the tiger salamander. J Physiol. 1992 Sep;455:111–142. doi: 10.1113/jphysiol.1992.sp019293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lamb T. D., McNaughton P. A., Yau K. W. Spatial spread of activation and background desensitization in toad rod outer segments. J Physiol. 1981;319:463–496. doi: 10.1113/jphysiol.1981.sp013921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McCarthy S. T., Younger J. P., Owen W. G. Dynamic, spatially nonuniform calcium regulation in frog rods exposed to light. J Neurophysiol. 1996 Sep;76(3):1991–2004. doi: 10.1152/jn.1996.76.3.1991. [DOI] [PubMed] [Google Scholar]
  18. Nakatani K., Tamura T., Yau K. W. Light adaptation in retinal rods of the rabbit and two other nonprimate mammals. J Gen Physiol. 1991 Mar;97(3):413–435. doi: 10.1085/jgp.97.3.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nikonov S., Engheta N., Pugh E. N., Jr Kinetics of recovery of the dark-adapted salamander rod photoresponse. J Gen Physiol. 1998 Jan;111(1):7–37. doi: 10.1085/jgp.111.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Olson A., Pugh E. N., Jr Diffusion coefficient of cyclic GMP in salamander rod outer segments estimated with two fluorescent probes. Biophys J. 1993 Sep;65(3):1335–1352. doi: 10.1016/S0006-3495(93)81177-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Polans A., Baehr W., Palczewski K. Turned on by Ca2+! The physiology and pathology of Ca(2+)-binding proteins in the retina. Trends Neurosci. 1996 Dec;19(12):547–554. doi: 10.1016/s0166-2236(96)10059-x. [DOI] [PubMed] [Google Scholar]
  22. Pugh E. N., Jr, Nikonov S., Lamb T. D. Molecular mechanisms of vertebrate photoreceptor light adaptation. Curr Opin Neurobiol. 1999 Aug;9(4):410–418. doi: 10.1016/S0959-4388(99)80062-2. [DOI] [PubMed] [Google Scholar]
  23. Rispoli G., Sather W. A., Detwiler P. B. Visual transduction in dialysed detached rod outer segments from lizard retina. J Physiol. 1993 Jun;465:513–537. doi: 10.1113/jphysiol.1993.sp019691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sampath A. P., Matthews H. R., Cornwall M. C., Fain G. L. Bleached pigment produces a maintained decrease in outer segment Ca2+ in salamander rods. J Gen Physiol. 1998 Jan;111(1):53–64. doi: 10.1085/jgp.111.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schnetkamp P. P., Li X. B., Basu D. K., Szerencsei R. T. Regulation of free cytosolic Ca2+ concentration in the outer segments of bovine retinal rods by Na-Ca-K exchange measured with fluo-3. I. Efficiency of transport and interactions between cations. J Biol Chem. 1991 Dec 5;266(34):22975–22982. [PubMed] [Google Scholar]
  26. Schnetkamp P. P., Szerencsei R. T. Intracellular Ca2+ sequestration and release in intact bovine retinal rod outer segments. Role in inactivation of Na-Ca+K exchange. J Biol Chem. 1993 Jun 15;268(17):12449–12457. [PubMed] [Google Scholar]
  27. Wagner J., Keizer J. Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. Biophys J. 1994 Jul;67(1):447–456. doi: 10.1016/S0006-3495(94)80500-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yau K. W., Nakatani K. Light-induced reduction of cytoplasmic free calcium in retinal rod outer segment. Nature. 1985 Feb 14;313(6003):579–582. doi: 10.1038/313579a0. [DOI] [PubMed] [Google Scholar]
  29. Zhou Z., Neher E. Mobile and immobile calcium buffers in bovine adrenal chromaffin cells. J Physiol. 1993 Sep;469:245–273. doi: 10.1113/jphysiol.1993.sp019813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. al-Baldawi N. F., Abercrombie R. F. Calcium diffusion coefficient in Myxicola axoplasm. Cell Calcium. 1995 Jun;17(6):422–430. doi: 10.1016/0143-4160(95)90088-8. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES