Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Feb;82(2):740–751. doi: 10.1016/S0006-3495(02)75436-2

Evidence for a light-induced H(+) conductance in the eye of the green alga Chlamydomonas reinhardtii.

Sabine Ehlenbeck 1, Dietrich Gradmann 1, Franz-Josef Braun 1, Peter Hegemann 1
PMCID: PMC1301883  PMID: 11806916

Abstract

Rhodopsin-mediated photoreceptor currents, I(P), of the unicellular alga Chlamydomonas reinhardtii were studied under neutral and acidic conditions. We characterized the kinetically overlapping components of the first, flash-induced inward current recorded from the eye, I(P1), as a low- and high-intensity component, I(P1a) and I(P1b), respectively. They peak between 1 and 10 ms after the light-flash and are both likely to be carried by Ca(2+). I(P1a) and I(P1b) exhibit half-maximal photon flux densities, Q(1/2), of approximately 0.14 and 58 microE m(-2), and maximal amplitudes of approximately 4.9 and 38 pA, respectively. At acidic extracellular pH values (pH 3-5), both I(P1) currents are followed by distinct H(+) currents, I(P2a) and I(P2b), with maxima after approximately 5 and 100 ms, respectively. Because the Q(1/2) values of I(P1b) and I(P2b) virtually coincide with Q(1/2) of rhodopsin bleaching, we suggest that the respective conductances G(1b) and G(2b) are closely coupled to the rhodopsin, whereas the low light-saturating conductances G(1a) and G(2a) reflect transducer-activated states of a second rhodopsin photoreceptor system.

Full Text

The Full Text of this article is available as a PDF (255.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beck C., Uhl R. On the localization of voltage-sensitive calcium channels in the flagella of Chlamydomonas reinhardtii. J Cell Biol. 1994 Jun;125(5):1119–1125. doi: 10.1083/jcb.125.5.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beckmann M., Hegemann P. In vitro identification of rhodopsin in the green alga Chlamydomonas. Biochemistry. 1991 Apr 16;30(15):3692–3697. doi: 10.1021/bi00229a014. [DOI] [PubMed] [Google Scholar]
  3. Blatt M. R., Gradmann D. K(+)-sensitive gating of the K+ outward rectifier in Vicia guard cells. J Membr Biol. 1997 Aug 1;158(3):241–256. doi: 10.1007/s002329900261. [DOI] [PubMed] [Google Scholar]
  4. Braun F. J., Hegemann P. Direct measurement of cytosolic calcium and pH in living Chlamydomonas reinhardtii cells. Eur J Cell Biol. 1999 Mar;78(3):199–208. doi: 10.1016/S0171-9335(99)80099-5. [DOI] [PubMed] [Google Scholar]
  5. Braun F. J., Hegemann P. Two light-activated conductances in the eye of the green alga Volvox carteri. Biophys J. 1999 Mar;76(3):1668–1678. doi: 10.1016/S0006-3495(99)77326-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Foster K. W., Smyth R. D. Light Antennas in phototactic algae. Microbiol Rev. 1980 Dec;44(4):572–630. doi: 10.1128/mr.44.4.572-630.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Govorunova E. G., Sineshchekov O. A., Gärtner W., Chunaev A. S., Hegemann P. Photoreceptor current and photoorientation in chlamydomonas mediated by 9-demethylchlamyrhodopsin. Biophys J. 2001 Nov;81(5):2897–2907. doi: 10.1016/S0006-3495(01)75930-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Govorunova E. G., Sineshchekov O. A., Hegemann P. Desensitization and Dark Recovery of the Photoreceptor Current in Chlamydomonas reinhardtii. Plant Physiol. 1997 Oct;115(2):633–642. doi: 10.1104/pp.115.2.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hegemann P., Gärtner W., Uhl R. All-trans retinal constitutes the functional chromophore in Chlamydomonas rhodopsin. Biophys J. 1991 Dec;60(6):1477–1489. doi: 10.1016/S0006-3495(91)82183-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Holland E. M., Braun F. J., Nonnengässer C., Harz H., Hegemann P. The nature of rhodopsin-triggered photocurrents in Chlamydomonas. I. Kinetics and influence of divalent ions. Biophys J. 1996 Feb;70(2):924–931. doi: 10.1016/S0006-3495(96)79635-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Holland E. M., Harz H., Uhl R., Hegemann P. Control of phobic behavioral responses by rhodopsin-induced photocurrents in Chlamydomonas. Biophys J. 1997 Sep;73(3):1395–1401. doi: 10.1016/S0006-3495(97)78171-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lawson M. A., Zacks D. N., Derguini F., Nakanishi K., Spudich J. L. Retinal analog restoration of photophobic responses in a blind Chlamydomonas reinhardtii mutant. Evidence for an archaebacterial like chromophore in a eukaryotic rhodopsin. Biophys J. 1991 Dec;60(6):1490–1498. doi: 10.1016/S0006-3495(91)82184-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Litvin F. F., Sineshchekov O. A., Sineshchekov V. A. Photoreceptor electric potential in the phototaxis of the alga Haematococcus pluvialis. Nature. 1978 Feb 2;271(5644):476–478. doi: 10.1038/271476a0. [DOI] [PubMed] [Google Scholar]
  14. Malhotra B., Glass ADM. Potassium Fluxes in Chlamydomonas reinhardtii (I.Kinetics and Electrical Potentials). Plant Physiol. 1995 Aug;108(4):1527–1536. doi: 10.1104/pp.108.4.1527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nonnengässer C., Holland E. M., Harz H., Hegemann P. The nature of rhodopsin-triggered photocurrents in Chlamydomonas. II. Influence of monovalent ions. Biophys J. 1996 Feb;70(2):932–938. doi: 10.1016/S0006-3495(96)79636-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sineshchekov O. A., Govorunova E. G., Dér A., Keszthelyi L., Nultsch W. Photoinduced electric currents in carotenoid-deficient Chlamydomonas mutants reconstituted with retinal and its analogs. Biophys J. 1994 Jun;66(6):2073–2084. doi: 10.1016/S0006-3495(94)81002-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sineshchekov O. A., Litvin F. F., Keszthelyi L. Two components of photoreceptor potential in phototaxis of the flagellated green alga Haematococcus pluvialis. Biophys J. 1990 Jan;57(1):33–39. doi: 10.1016/S0006-3495(90)82504-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sineshchekov OA, Govorunova EG. Rhodopsin-mediated photosensing in green flagellated algae. Trends Plant Sci. 1999 Feb;4(2):58–63. doi: 10.1016/s1360-1385(98)01370-3. [DOI] [PubMed] [Google Scholar]
  19. Stavis R. L., Hirschberg R. Phototaxis in Chlamydomonas reinhardtii. J Cell Biol. 1973 Nov;59(2 Pt 1):367–377. doi: 10.1083/jcb.59.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Takahashi T., Yoshihara K., Watanabe M., Kubota M., Johnson R., Derguini F., Nakanishi K. Photoisomerization of retinal at 13-ene is important for phototaxis of Chlamydomonas reinhardtii: simultaneous measurements of phototactic and photophobic responses. Biochem Biophys Res Commun. 1991 Aug 15;178(3):1273–1279. doi: 10.1016/0006-291x(91)91031-7. [DOI] [PubMed] [Google Scholar]
  21. Uhl R., Hegemann P. Probing visual transduction in a plant cell: Optical recording of rhodopsin-induced structural changes from Chlamydomonas reinhardtii. Biophys J. 1990 Nov;58(5):1295–1302. doi: 10.1016/S0006-3495(90)82469-3. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES