Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Feb;82(2):772–780. doi: 10.1016/S0006-3495(02)75439-8

The ionization state and the conformation of Glu-71 in the KcsA K(+) channel.

Simon Bernèche 1, Benoît Roux 1
PMCID: PMC1301886  PMID: 11806919

Abstract

The side chain of Glu-71 of the KcsA K(+) channel, an important residue in the vicinity of the selectivity filter, was not resolved in the crystallographic structure of Doyle et al. (Doyle, D. A., J. M. Cabral, R. A. Pfuetzner, A. Kuo, J. M. Gulbis, S. L. Cohen, B. T. Chait, and R. MacKinnon. 1998. Science. 280:69-77). Its atomic coordinates are undetermined and its ionization state is unknown. For meaningful theoretical and computational studies of the KcsA K(+) channel, it is essential to address questions about the conformation and the ionization state of this residue in detail. In previous MD simulations in which the side chain of Glu-71 is protonated and forming a strong hydrogen bond with Asp-80 it was observed that the channel did not deviate significantly from the crystallographic structure (Bernèche, S., and B. Roux. 2000. Biophys. J. 78:2900-2917). In contrast, we show here that the structure of the selectivity filter of the KcsA channel is significantly disrupted when these side chains are fully ionized on each of the four monomers. To further resolve questions about the ionization state of Glu-71 we calculated the pK(a) value of this residue using molecular dynamics free energy simulations (MD/FES) with a fully flexible system including explicit solvent and membrane and finite-difference Poisson-Boltzmann (PB) continuum electrostatics. It is found that the pK(a) of Glu-71 is shifted by approximately +10 pK(a) units. These results strongly suggest that Glu-71 is protonated under normal conditions.

Full Text

The Full Text of this article is available as a PDF (412.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexov E. G., Gunner M. R. Incorporating protein conformational flexibility into the calculation of pH-dependent protein properties. Biophys J. 1997 May;72(5):2075–2093. doi: 10.1016/S0006-3495(97)78851-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen T. W., Kuyucak S., Chung S. H. Molecular dynamics study of the KcsA potassium channel. Biophys J. 1999 Nov;77(5):2502–2516. doi: 10.1016/S0006-3495(99)77086-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Antosiewicz J., McCammon J. A., Gilson M. K. The determinants of pKas in proteins. Biochemistry. 1996 Jun 18;35(24):7819–7833. doi: 10.1021/bi9601565. [DOI] [PubMed] [Google Scholar]
  4. Aqvist J., Luzhkov V. Ion permeation mechanism of the potassium channel. Nature. 2000 Apr 20;404(6780):881–884. doi: 10.1038/35009114. [DOI] [PubMed] [Google Scholar]
  5. Bashford D., Karplus M. pKa's of ionizable groups in proteins: atomic detail from a continuum electrostatic model. Biochemistry. 1990 Nov 6;29(44):10219–10225. doi: 10.1021/bi00496a010. [DOI] [PubMed] [Google Scholar]
  6. Bernèche S., Roux B. Molecular dynamics of the KcsA K(+) channel in a bilayer membrane. Biophys J. 2000 Jun;78(6):2900–2917. doi: 10.1016/S0006-3495(00)76831-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Biggin P. C., Smith G. R., Shrivastava I., Choe S., Sansom M. S. Potassium and sodium ions in a potassium channel studied by molecular dynamics simulations. Biochim Biophys Acta. 2001 Feb 9;1510(1-2):1–9. doi: 10.1016/s0005-2736(00)00345-x. [DOI] [PubMed] [Google Scholar]
  8. Crouzy S., Bernèche S., Roux B. Extracellular blockade of K(+) channels by TEA: results from molecular dynamics simulations of the KcsA channel. J Gen Physiol. 2001 Aug;118(2):207–218. doi: 10.1085/jgp.118.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
  10. Dwyer J. J., Gittis A. G., Karp D. A., Lattman E. E., Spencer D. S., Stites W. E., García-Moreno E B. High apparent dielectric constants in the interior of a protein reflect water penetration. Biophys J. 2000 Sep;79(3):1610–1620. doi: 10.1016/S0006-3495(00)76411-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Guidoni L., Torre V., Carloni P. Potassium and sodium binding to the outer mouth of the K+ channel. Biochemistry. 1999 Jul 6;38(27):8599–8604. doi: 10.1021/bi990540c. [DOI] [PubMed] [Google Scholar]
  12. Guidoni L., Torre V., Carloni P. Water and potassium dynamics inside the KcsA K(+) channel. FEBS Lett. 2000 Jul 14;477(1-2):37–42. doi: 10.1016/s0014-5793(00)01712-9. [DOI] [PubMed] [Google Scholar]
  13. Havranek J. J., Harbury P. B. Tanford-Kirkwood electrostatics for protein modeling. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11145–11150. doi: 10.1073/pnas.96.20.11145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Luzhkov V. B., Aqvist J. A computational study of ion binding and protonation states in the KcsA potassium channel. Biochim Biophys Acta. 2000 Sep 29;1481(2):360–370. doi: 10.1016/s0167-4838(00)00183-7. [DOI] [PubMed] [Google Scholar]
  15. Luzhkov V. B., Aqvist J. Mechanisms of tetraethylammonium ion block in the KcsA potassium channel. FEBS Lett. 2001 Apr 27;495(3):191–196. doi: 10.1016/s0014-5793(01)02381-x. [DOI] [PubMed] [Google Scholar]
  16. Ranatunga K. M., Shrivastava I. H., Smith G. R., Sansom M. S. Side-chain ionization states in a potassium channel. Biophys J. 2001 Mar;80(3):1210–1219. doi: 10.1016/S0006-3495(01)76097-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Richards F. M. Areas, volumes, packing and protein structure. Annu Rev Biophys Bioeng. 1977;6:151–176. doi: 10.1146/annurev.bb.06.060177.001055. [DOI] [PubMed] [Google Scholar]
  18. Roux B., Bernèche S., Im W. Ion channels, permeation, and electrostatics: insight into the function of KcsA. Biochemistry. 2000 Nov 7;39(44):13295–13306. doi: 10.1021/bi001567v. [DOI] [PubMed] [Google Scholar]
  19. Sharp K. A., Honig B. Electrostatic interactions in macromolecules: theory and applications. Annu Rev Biophys Biophys Chem. 1990;19:301–332. doi: 10.1146/annurev.bb.19.060190.001505. [DOI] [PubMed] [Google Scholar]
  20. Shrivastava I. H., Sansom M. S. Simulations of ion permeation through a potassium channel: molecular dynamics of KcsA in a phospholipid bilayer. Biophys J. 2000 Feb;78(2):557–570. doi: 10.1016/S0006-3495(00)76616-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Takashima S., Schwan H. P. Dielectric dispersion of crystalline powders of amino acids, peptides, and proteins. J Phys Chem. 1965 Dec;69(12):4176–4182. doi: 10.1021/j100782a019. [DOI] [PubMed] [Google Scholar]
  22. Yang A. S., Gunner M. R., Sampogna R., Sharp K., Honig B. On the calculation of pKas in proteins. Proteins. 1993 Mar;15(3):252–265. doi: 10.1002/prot.340150304. [DOI] [PubMed] [Google Scholar]
  23. Zhou M., Morais-Cabral J. H., Mann S., MacKinnon R. Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature. 2001 Jun 7;411(6838):657–661. doi: 10.1038/35079500. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES