Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Feb;82(2):781–792. doi: 10.1016/S0006-3495(02)75440-4

Carboxyl tail prevents yeast K(+) channel closure: proposal of an integrated model of TOK1 gating.

Stephen H Loukin 1, Yoshiro Saimi 1
PMCID: PMC1301887  PMID: 11806920

Abstract

TOK1 encodes the channel responsible for the prominent outward K(+) current of the yeast plasma membrane. It can dwell in several impermeable states, including a rapidly transiting, K(+)-electromotive-force-dependent "R" (rectifying) state, a voltage-independent "IB" (interburst) state, and a set of [K(+)](ext) and voltage-dependent "C" (closed) states. Whereas evidence suggests that the C states result from the constriction of an inner gate at the cytosolic end of the pore, R is most likely an intrinsic gating property of the K(+) filter. Here, we present evidence that Tok1's carboxyl-tail domain also plays an intimate role in channel gating by dynamically preventing inner-gate closures. We present an integrated model of TOK1 gating in which the filter gate, inner gate, and carboxyl tail interact to produce the various phenomenological states. Both wild-type and tailless behaviors can be replicated using Monte Carlo computer simulations based on this model.

Full Text

The Full Text of this article is available as a PDF (400.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bach M. L., Lacroute F., Botstein D. Evidence for transcriptional regulation of orotidine-5'-phosphate decarboxylase in yeast by hybridization of mRNA to the yeast structural gene cloned in Escherichia coli. Proc Natl Acad Sci U S A. 1979 Jan;76(1):386–390. doi: 10.1073/pnas.76.1.386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cushman S. J., Nanao M. H., Jahng A. W., DeRubeis D., Choe S., Pfaffinger P. J. Voltage dependent activation of potassium channels is coupled to T1 domain structure. Nat Struct Biol. 2000 May;7(5):403–407. doi: 10.1038/75185. [DOI] [PubMed] [Google Scholar]
  3. Czempinski K., Zimmermann S., Ehrhardt T., Müller-Röber B. New structure and function in plant K+ channels: KCO1, an outward rectifier with a steep Ca2+ dependency. EMBO J. 1997 May 15;16(10):2565–2575. doi: 10.1093/emboj/16.10.2565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Derst C, Karschin A. Review: Evolutionary link between prokaryotic and eukaryotic K+ channels. J Exp Biol. 1998 Sep 22;201(Pt 20):2791–2799. [PubMed] [Google Scholar]
  5. Duprat F., Lesage F., Fink M., Reyes R., Heurteaux C., Lazdunski M. TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J. 1997 Sep 1;16(17):5464–5471. doi: 10.1093/emboj/16.17.5464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gordon S. E., Zagotta W. N. A histidine residue associated with the gate of the cyclic nucleotide-activated channels in rod photoreceptors. Neuron. 1995 Jan;14(1):177–183. doi: 10.1016/0896-6273(95)90252-x. [DOI] [PubMed] [Google Scholar]
  7. Gordon S. E., Zagotta W. N. Localization of regions affecting an allosteric transition in cyclic nucleotide-activated channels. Neuron. 1995 Apr;14(4):857–864. doi: 10.1016/0896-6273(95)90229-5. [DOI] [PubMed] [Google Scholar]
  8. Gustin M. C., Martinac B., Saimi Y., Culbertson M. R., Kung C. Ion channels in yeast. Science. 1986 Sep 12;233(4769):1195–1197. doi: 10.1126/science.2426783. [DOI] [PubMed] [Google Scholar]
  9. Haider A. W., Luna M., Patel S., Gaziano J. M. Antibiotic use and risk of myocardial infarction. JAMA. 1999 Dec 1;282(21):1997–1999. [PubMed] [Google Scholar]
  10. Ketchum K. A., Joiner W. J., Sellers A. J., Kaczmarek L. K., Goldstein S. A. A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem. Nature. 1995 Aug 24;376(6542):690–695. doi: 10.1038/376690a0. [DOI] [PubMed] [Google Scholar]
  11. Kiss L., Korn S. J. Modulation of C-type inactivation by K+ at the potassium channel selectivity filter. Biophys J. 1998 Apr;74(4):1840–1849. doi: 10.1016/S0006-3495(98)77894-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lesage F., Guillemare E., Fink M., Duprat F., Lazdunski M., Romey G., Barhanin J. A pH-sensitive yeast outward rectifier K+ channel with two pore domains and novel gating properties. J Biol Chem. 1996 Feb 23;271(8):4183–4187. doi: 10.1074/jbc.271.8.4183. [DOI] [PubMed] [Google Scholar]
  13. Liu Y., Holmgren M., Jurman M. E., Yellen G. Gated access to the pore of a voltage-dependent K+ channel. Neuron. 1997 Jul;19(1):175–184. doi: 10.1016/s0896-6273(00)80357-8. [DOI] [PubMed] [Google Scholar]
  14. Liu Y., Jurman M. E., Yellen G. Dynamic rearrangement of the outer mouth of a K+ channel during gating. Neuron. 1996 Apr;16(4):859–867. doi: 10.1016/s0896-6273(00)80106-3. [DOI] [PubMed] [Google Scholar]
  15. Loukin S. H., Saimi Y. K(+)-dependent composite gating of the yeast K(+) channel, Tok1. Biophys J. 1999 Dec;77(6):3060–3070. doi: 10.1016/S0006-3495(99)77137-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Loukin S. H., Vaillant B., Zhou X. L., Spalding E. P., Kung C., Saimi Y. Random mutagenesis reveals a region important for gating of the yeast K+ channel Ykc1. EMBO J. 1997 Aug 15;16(16):4817–4825. doi: 10.1093/emboj/16.16.4817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Maingret F., Lauritzen I., Patel A. J., Heurteaux C., Reyes R., Lesage F., Lazdunski M., Honoré E. TREK-1 is a heat-activated background K(+) channel. EMBO J. 2000 Jun 1;19(11):2483–2491. doi: 10.1093/emboj/19.11.2483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Maingret F., Patel A. J., Lesage F., Lazdunski M., Honoré E. Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J Biol Chem. 1999 Sep 17;274(38):26691–26696. doi: 10.1074/jbc.274.38.26691. [DOI] [PubMed] [Google Scholar]
  19. Minor D. L., Lin Y. F., Mobley B. C., Avelar A., Jan Y. N., Jan L. Y., Berger J. M. The polar T1 interface is linked to conformational changes that open the voltage-gated potassium channel. Cell. 2000 Sep 1;102(5):657–670. doi: 10.1016/s0092-8674(00)00088-x. [DOI] [PubMed] [Google Scholar]
  20. Murakoshi H., Shi G., Scannevin R. H., Trimmer J. S. Phosphorylation of the Kv2.1 K+ channel alters voltage-dependent activation. Mol Pharmacol. 1997 Nov;52(5):821–828. doi: 10.1124/mol.52.5.821. [DOI] [PubMed] [Google Scholar]
  21. Patel A. J., Honoré E., Lesage F., Fink M., Romey G., Lazdunski M. Inhalational anesthetics activate two-pore-domain background K+ channels. Nat Neurosci. 1999 May;2(5):422–426. doi: 10.1038/8084. [DOI] [PubMed] [Google Scholar]
  22. Reid J. D., Lukas W., Shafaatian R., Bertl A., Scheurmann-Kettner C., Guy H. R., North R. A. The S. cerevisiae outwardly-rectifying potassium channel (DUK1) identifies a new family of channels with duplicated pore domains. Receptors Channels. 1996;4(1):51–62. [PubMed] [Google Scholar]
  23. Schreiber M., Yuan A., Salkoff L. Transplantable sites confer calcium sensitivity to BK channels. Nat Neurosci. 1999 May;2(5):416–421. doi: 10.1038/8077. [DOI] [PubMed] [Google Scholar]
  24. Sesti F., Shih T. M., Nikolaeva N., Goldstein S. A. Immunity to K1 killer toxin: internal TOK1 blockade. Cell. 2001 Jun 1;105(5):637–644. doi: 10.1016/s0092-8674(01)00376-2. [DOI] [PubMed] [Google Scholar]
  25. Shimbo K., Brassard D. L., Lamb R. A., Pinto L. H. Viral and cellular small integral membrane proteins can modify ion channels endogenous to Xenopus oocytes. Biophys J. 1995 Nov;69(5):1819–1829. doi: 10.1016/S0006-3495(95)80052-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tzounopoulos T., Maylie J., Adelman J. P. Induction of endogenous channels by high levels of heterologous membrane proteins in Xenopus oocytes. Biophys J. 1995 Sep;69(3):904–908. doi: 10.1016/S0006-3495(95)79964-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Varnum M. D., Zagotta W. N. Interdomain interactions underlying activation of cyclic nucleotide-gated channels. Science. 1997 Oct 3;278(5335):110–113. doi: 10.1126/science.278.5335.110. [DOI] [PubMed] [Google Scholar]
  28. Vergani P., Miosga T., Jarvis S. M., Blatt M. R. Extracellular K+ and Ba2+ mediate voltage-dependent inactivation of the outward-rectifying K+ channel encoded by the yeast gene TOK1. FEBS Lett. 1997 Apr 1;405(3):337–344. doi: 10.1016/s0014-5793(97)00211-1. [DOI] [PubMed] [Google Scholar]
  29. Yang Y., Yan Y., Sigworth F. J. How does the W434F mutation block current in Shaker potassium channels? J Gen Physiol. 1997 Jun;109(6):779–789. doi: 10.1085/jgp.109.6.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zhou X. L., Vaillant B., Loukin S. H., Kung C., Saimi Y. YKC1 encodes the depolarization-activated K+ channel in the plasma membrane of yeast. FEBS Lett. 1995 Oct 9;373(2):170–176. doi: 10.1016/0014-5793(95)01035-d. [DOI] [PubMed] [Google Scholar]
  31. Zilberberg N., Ilan N., Gonzalez-Colaso R., Goldstein S. A. Opening and closing of KCNKO potassium leak channels is tightly regulated. J Gen Physiol. 2000 Nov;116(5):721–734. doi: 10.1085/jgp.116.5.721. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES