Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Feb;82(2):793–802. doi: 10.1016/S0006-3495(02)75441-6

Suramin affects coupling of rhodopsin to transducin.

Nicole Lehmann 1, Gopala Krishna Aradhyam 1, Karim Fahmy 1
PMCID: PMC1301888  PMID: 11806921

Abstract

Suramin, a polysulfonated naphthylurea, is under investigation for the treatment of several cancers. It interferes with signal transduction through G(s), G(i), and G(o), but structural and kinetic aspects of the molecular mechanism are not well understood. Here, we have investigated the influence of suramin on coupling of bovine rhodopsin to G(t), where G-protein activation and receptor structure can be monitored by spectroscopic in vitro assays. G(t) fluorescence changes in response to rhodopsin-catalyzed nucleotide exchange reveal that suramin inhibits G(t) activation by slowing down the rate of complex formation between metarhodopsin-II and G(t). The metarhodopsin-I/-II photoproduct equilibrium, GTPase activity, and nucleotide uptake by G(t) are unaffected. Attenuated total reflection Fourier transform infrared spectroscopy shows that the structure of rhodopsin, metarhodopsin-II, and the metarhodopsin-II G(t) complex is also not altered. Instead, suramin dissociates G(t) from disk membranes in the dark, whereas metarhodopsin-II G(t) complexes are stable. Förster resonance energy transfer suggests a suramin-binding site near Trp(207) on the G(t alpha) subunit (K(d) approximately 0.5 microM). The kinetic analyses and the structural data are consistent with a specific perturbation by suramin of the membrane attachment site on G(t alpha). Disruption of membrane anchoring may contribute to some of the effects of suramin exerted on other G-proteins.

Full Text

The Full Text of this article is available as a PDF (173.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antonny B., Otto-Bruc A., Chabre M., Vuong T. M. GTP hydrolysis by purified alpha-subunit of transducin and its complex with the cyclic GMP phosphodiesterase inhibitor. Biochemistry. 1993 Aug 24;32(33):8646–8653. doi: 10.1021/bi00084a036. [DOI] [PubMed] [Google Scholar]
  2. Beindl W., Mitterauer T., Hohenegger M., Ijzerman A. P., Nanoff C., Freissmuth M. Inhibition of receptor/G protein coupling by suramin analogues. Mol Pharmacol. 1996 Aug;50(2):415–423. [PubMed] [Google Scholar]
  3. Berlot C. H., Bourne H. R. Identification of effector-activating residues of Gs alpha. Cell. 1992 Mar 6;68(5):911–922. doi: 10.1016/0092-8674(92)90034-a. [DOI] [PubMed] [Google Scholar]
  4. Birge R. R., Barlow R. B. On the molecular origins of thermal noise in vertebrate and invertebrate photoreceptors. Biophys Chem. 1995 Jun-Jul;55(1-2):115–126. doi: 10.1016/0301-4622(94)00145-a. [DOI] [PubMed] [Google Scholar]
  5. Butler S. J., Kelly E. C., McKenzie F. R., Guild S. B., Wakelam M. J., Milligan G. Differential effects of suramin on the coupling of receptors to individual species of pertussis-toxin-sensitive guanine-nucleotide-binding proteins. Biochem J. 1988 Apr 1;251(1):201–205. doi: 10.1042/bj2510201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chaudhry V., Eisenberger M. A., Sinibaldi V. J., Sheikh K., Griffin J. W., Cornblath D. R. A prospective study of suramin-induced peripheral neuropathy. Brain. 1996 Dec;119(Pt 6):2039–2052. doi: 10.1093/brain/119.6.2039. [DOI] [PubMed] [Google Scholar]
  7. Coffey R. J., Jr, Leof E. B., Shipley G. D., Moses H. L. Suramin inhibition of growth factor receptor binding and mitogenicity in AKR-2B cells. J Cell Physiol. 1987 Jul;132(1):143–148. doi: 10.1002/jcp.1041320120. [DOI] [PubMed] [Google Scholar]
  8. Dawson N., Figg W. D., Brawley O. W., Bergan R., Cooper M. R., Senderowicz A., Headlee D., Steinberg S. M., Sutherland M., Patronas N. Phase II study of suramin plus aminoglutethimide in two cohorts of patients with androgen-independent prostate cancer: simultaneous antiandrogen withdrawal and prior antiandrogen withdrawal. Clin Cancer Res. 1998 Jan;4(1):37–44. [PubMed] [Google Scholar]
  9. Dreicer R., Smith D. C., Williams R. D., See W. A. Phase II trial of suramin in patients with metastatic renal cell carcinoma. Invest New Drugs. 1999;17(2):183–186. doi: 10.1023/a:1006331518952. [DOI] [PubMed] [Google Scholar]
  10. Ernst O. P., Bieri C., Vogel H., Hofmann K. P. Intrinsic biophysical monitors of transducin activation: fluorescence, UV-visible spectroscopy, light scattering, and evanescent field techniques. Methods Enzymol. 2000;315:471–489. doi: 10.1016/s0076-6879(00)15862-8. [DOI] [PubMed] [Google Scholar]
  11. Fahmy K. Binding of transducin and transducin-derived peptides to rhodopsin studies by attenuated total reflection-Fourier transform infrared difference spectroscopy. Biophys J. 1998 Sep;75(3):1306–1318. doi: 10.1016/s0006-3495(98)74049-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fahmy K., Jäger F., Beck M., Zvyaga T. A., Sakmar T. P., Siebert F. Protonation states of membrane-embedded carboxylic acid groups in rhodopsin and metarhodopsin II: a Fourier-transform infrared spectroscopy study of site-directed mutants. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10206–10210. doi: 10.1073/pnas.90.21.10206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fahmy K., Sakmar T. P. Light-dependent transducin activation by an ultraviolet-absorbing rhodopsin mutant. Biochemistry. 1993 Sep 7;32(35):9165–9171. doi: 10.1021/bi00086a023. [DOI] [PubMed] [Google Scholar]
  14. Fahmy K., Siebert F., Sakmar T. P. A mutant rhodopsin photoproduct with a protonated Schiff base displays an active-state conformation: a Fourier-transform infrared spectroscopy study. Biochemistry. 1994 Nov 22;33(46):13700–13705. doi: 10.1021/bi00250a021. [DOI] [PubMed] [Google Scholar]
  15. Fanelli F., Menziani C., Scheer A., Cotecchia S., De Benedetti P. G. Theoretical study of the electrostatically driven step of receptor-G protein recognition. Proteins. 1999 Nov 1;37(2):145–156. [PubMed] [Google Scholar]
  16. Farrens D. L., Altenbach C., Yang K., Hubbell W. L., Khorana H. G. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science. 1996 Nov 1;274(5288):768–770. doi: 10.1126/science.274.5288.768. [DOI] [PubMed] [Google Scholar]
  17. Faurobert E., Otto-Bruc A., Chardin P., Chabre M. Tryptophan W207 in transducin T alpha is the fluorescence sensor of the G protein activation switch and is involved in the effector binding. EMBO J. 1993 Nov;12(11):4191–4198. doi: 10.1002/j.1460-2075.1993.tb06103.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Firsching A., Nickel P., Mora P., Allolio B. Antiproliferative and angiostatic activity of suramin analogues. Cancer Res. 1995 Nov 1;55(21):4957–4961. [PubMed] [Google Scholar]
  19. Freissmuth M., Boehm S., Beindl W., Nickel P., Ijzerman A. P., Hohenegger M., Nanoff C. Suramin analogues as subtype-selective G protein inhibitors. Mol Pharmacol. 1996 Apr;49(4):602–611. [PubMed] [Google Scholar]
  20. Fung B. K., Hurley J. B., Stryer L. Flow of information in the light-triggered cyclic nucleotide cascade of vision. Proc Natl Acad Sci U S A. 1981 Jan;78(1):152–156. doi: 10.1073/pnas.78.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gagliardi A. R., Kassack M., Kreimeyer A., Muller G., Nickel P., Collins D. C. Antiangiogenic and antiproliferative activity of suramin analogues. Cancer Chemother Pharmacol. 1998;41(2):117–124. doi: 10.1007/s002800050717. [DOI] [PubMed] [Google Scholar]
  22. Gether U. Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev. 2000 Feb;21(1):90–113. doi: 10.1210/edrv.21.1.0390. [DOI] [PubMed] [Google Scholar]
  23. Han M., Lin S. W., Minkova M., Smith S. O., Sakmar T. P. Functional interaction of transmembrane helices 3 and 6 in rhodopsin. Replacement of phenylalanine 261 by alanine causes reversion of phenotype of a glycine 121 replacement mutant. J Biol Chem. 1996 Dec 13;271(50):32337–32342. doi: 10.1074/jbc.271.50.32337. [DOI] [PubMed] [Google Scholar]
  24. Helmreich E. J., Hofmann K. P. Structure and function of proteins in G-protein-coupled signal transfer. Biochim Biophys Acta. 1996 Oct 29;1286(3):285–322. doi: 10.1016/s0304-4157(96)00013-5. [DOI] [PubMed] [Google Scholar]
  25. Hemady R. K., Sinibaldi V. J., Eisenberger M. A. Ocular symptoms and signs associated with suramin sodium treatment for metastatic cancer of the prostate. Am J Ophthalmol. 1996 Mar;121(3):291–296. doi: 10.1016/s0002-9394(14)70277-6. [DOI] [PubMed] [Google Scholar]
  26. Higashijima T., Ferguson K. M., Sternweis P. C., Ross E. M., Smigel M. D., Gilman A. G. The effect of activating ligands on the intrinsic fluorescence of guanine nucleotide-binding regulatory proteins. J Biol Chem. 1987 Jan 15;262(2):752–756. [PubMed] [Google Scholar]
  27. Hohenegger M., Waldhoer M., Beindl W., Böing B., Kreimeyer A., Nickel P., Nanoff C., Freissmuth M. Gsalpha-selective G protein antagonists. Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):346–351. doi: 10.1073/pnas.95.1.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Huang R. R., Dehaven R. N., Cheung A. H., Diehl R. E., Dixon R. A., Strader C. D. Identification of allosteric antagonists of receptor-guanine nucleotide-binding protein interactions. Mol Pharmacol. 1990 Feb;37(2):304–310. [PubMed] [Google Scholar]
  29. Höller C., Freissmuth M., Nanoff C. G proteins as drug targets. Cell Mol Life Sci. 1999 Feb;55(2):257–270. doi: 10.1007/s000180050288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ji T. H., Grossmann M., Ji I. G protein-coupled receptors. I. Diversity of receptor-ligand interactions. J Biol Chem. 1998 Jul 10;273(28):17299–17302. doi: 10.1074/jbc.273.28.17299. [DOI] [PubMed] [Google Scholar]
  31. Jäger F., Fahmy K., Sakmar T. P., Siebert F. Identification of glutamic acid 113 as the Schiff base proton acceptor in the metarhodopsin II photointermediate of rhodopsin. Biochemistry. 1994 Sep 13;33(36):10878–10882. doi: 10.1021/bi00202a005. [DOI] [PubMed] [Google Scholar]
  32. Khaled Z., Rideout D., O'Driscoll K. R., Petrylak D., Cacace A., Patel R., Chiang L. C., Rotenberg S., Stein C. A. Effects of suramin-related and other clinically therapeutic polyanions on protein kinase C activity. Clin Cancer Res. 1995 Jan;1(1):113–122. [PubMed] [Google Scholar]
  33. Kühn H. Light- and GTP-regulated interaction of GTPase and other proteins with bovine photoreceptor membranes. Nature. 1980 Feb 7;283(5747):587–589. doi: 10.1038/283587a0. [DOI] [PubMed] [Google Scholar]
  34. Lozano R. M., Jiménez M., Santoro J., Rico M., Giménez-Gallego G. Solution structure of acidic fibroblast growth factor bound to 1,3, 6-naphthalenetrisulfonate: a minimal model for the anti-tumoral action of suramins and suradistas. J Mol Biol. 1998 Sep 4;281(5):899–915. doi: 10.1006/jmbi.1998.1977. [DOI] [PubMed] [Google Scholar]
  35. Matsuda T., Takao T., Shimonishi Y., Murata M., Asano T., Yoshizawa T., Fukada Y. Characterization of interactions between transducin alpha/beta gamma-subunits and lipid membranes. J Biol Chem. 1994 Dec 2;269(48):30358–30363. [PubMed] [Google Scholar]
  36. Menon S. T., Han M., Sakmar T. P. Rhodopsin: structural basis of molecular physiology. Physiol Rev. 2001 Oct;81(4):1659–1688. doi: 10.1152/physrev.2001.81.4.1659. [DOI] [PubMed] [Google Scholar]
  37. Milligan G., Grassie M. A. How do G-proteins stay at the plasma membrane? Essays Biochem. 1997;32:49–60. [PubMed] [Google Scholar]
  38. Mirza M. R., Jakobsen E., Pfeiffer P., Lindebjerg-Clasen B., Bergh J., Rose C. Suramin in non-small cell lung cancer and advanced breast cancer. Two parallel phase II studies. Acta Oncol. 1997;36(2):171–174. doi: 10.3109/02841869709109226. [DOI] [PubMed] [Google Scholar]
  39. Mély Y., Cadène M., Sylte I., Bieth J. G. Mapping the suramin-binding sites of human neutrophil elastase: investigation by fluorescence resonance energy transfer and molecular modeling. Biochemistry. 1997 Dec 16;36(50):15624–15631. doi: 10.1021/bi971029r. [DOI] [PubMed] [Google Scholar]
  40. Okada T., Ernst O. P., Palczewski K., Hofmann K. P. Activation of rhodopsin: new insights from structural and biochemical studies. Trends Biochem Sci. 2001 May;26(5):318–324. doi: 10.1016/s0968-0004(01)01799-6. [DOI] [PubMed] [Google Scholar]
  41. Oseroff A. R., Callender R. H. Resonance Raman spectroscopy of rhodopsin in retinal disk membranes. Biochemistry. 1974 Sep 24;13(20):4243–4248. doi: 10.1021/bi00717a027. [DOI] [PubMed] [Google Scholar]
  42. Otto-Bruc A., Antonny B., Vuong T. M. Modulation of the GTPase activity of transducin. Kinetic studies of reconstituted systems. Biochemistry. 1994 Dec 27;33(51):15215–15222. doi: 10.1021/bi00255a001. [DOI] [PubMed] [Google Scholar]
  43. Palczewski K., Kumasaka T., Hori T., Behnke C. A., Motoshima H., Fox B. A., Le Trong I., Teller D. C., Okada T., Stenkamp R. E. Crystal structure of rhodopsin: A G protein-coupled receptor. Science. 2000 Aug 4;289(5480):739–745. doi: 10.1126/science.289.5480.739. [DOI] [PubMed] [Google Scholar]
  44. Papermaster D. S. Preparation of retinal rod outer segments. Methods Enzymol. 1982;81:48–52. doi: 10.1016/s0076-6879(82)81010-0. [DOI] [PubMed] [Google Scholar]
  45. Pigault C., Gerard D. Influence of the location of tryptophanyl residues in proteins on their photosensitivity. Photochem Photobiol. 1984 Sep;40(3):291–297. doi: 10.1111/j.1751-1097.1984.tb04590.x. [DOI] [PubMed] [Google Scholar]
  46. Rarick H. M., Artemyev N. O., Hamm H. E. A site on rod G protein alpha subunit that mediates effector activation. Science. 1992 May 15;256(5059):1031–1033. doi: 10.1126/science.1317058. [DOI] [PubMed] [Google Scholar]
  47. Rath P., DeCaluwé L. L., Bovee-Geurts P. H., DeGrip W. J., Rothschild K. J. Fourier transform infrared difference spectroscopy of rhodopsin mutants: light activation of rhodopsin causes hydrogen-bonding change in residue aspartic acid-83 during meta II formation. Biochemistry. 1993 Oct 5;32(39):10277–10282. doi: 10.1021/bi00090a001. [DOI] [PubMed] [Google Scholar]
  48. Rieke F., Baylor D. A. Molecular origin of continuous dark noise in rod photoreceptors. Biophys J. 1996 Nov;71(5):2553–2572. doi: 10.1016/S0006-3495(96)79448-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Schleicher A., Hofmann K. P. Kinetic study on the equilibrium between membrane-bound and free photoreceptor G-protein. J Membr Biol. 1987;95(3):271–281. doi: 10.1007/BF01869489. [DOI] [PubMed] [Google Scholar]
  50. Seitz H. R., Heck M., Hofmann K. P., Alt T., Pellaud J., Seelig A. Molecular determinants of the reversible membrane anchorage of the G-protein transducin. Biochemistry. 1999 Jun 22;38(25):7950–7960. doi: 10.1021/bi990298+. [DOI] [PubMed] [Google Scholar]
  51. Sheikh S. P., Zvyaga T. A., Lichtarge O., Sakmar T. P., Bourne H. R. Rhodopsin activation blocked by metal-ion-binding sites linking transmembrane helices C and F. Nature. 1996 Sep 26;383(6598):347–350. doi: 10.1038/383347a0. [DOI] [PubMed] [Google Scholar]
  52. Shichi H., Yamamoto K., Somers R. L. GTP binding protein: properties and lack of activation by phosphorylated rhodopsin. Vision Res. 1984;24(11):1523–1531. doi: 10.1016/s0042-6989(84)80001-2. [DOI] [PubMed] [Google Scholar]
  53. Waldhoer M., Bofill-Cardona E., Milligan G., Freissmuth M., Nanoff C. Differential uncoupling of A1 adenosine and D2 dopamine receptors by suramin and didemethylated suramin (NF037). Mol Pharmacol. 1998 May;53(5):808–818. [PubMed] [Google Scholar]
  54. Wedegaertner P. B., Bourne H. R. Activation and depalmitoylation of Gs alpha. Cell. 1994 Jul 1;77(7):1063–1070. doi: 10.1016/0092-8674(94)90445-6. [DOI] [PubMed] [Google Scholar]
  55. Wedegaertner P. B., Wilson P. T., Bourne H. R. Lipid modifications of trimeric G proteins. J Biol Chem. 1995 Jan 13;270(2):503–506. doi: 10.1074/jbc.270.2.503. [DOI] [PubMed] [Google Scholar]
  56. Yamanaka G., Eckstein F., Stryer L. Stereochemistry of the guanyl nucleotide binding site of transducin probed by phosphorothioate analogues of GTP and GDP. Biochemistry. 1985 Dec 31;24(27):8094–8101. doi: 10.1021/bi00348a039. [DOI] [PubMed] [Google Scholar]
  57. Zhang Y. L., Keng Y. F., Zhao Y., Wu L., Zhang Z. Y. Suramin is an active site-directed, reversible, and tight-binding inhibitor of protein-tyrosine phosphatases. J Biol Chem. 1998 May 15;273(20):12281–12287. doi: 10.1074/jbc.273.20.12281. [DOI] [PubMed] [Google Scholar]
  58. Zvyaga T. A., Fahmy K., Siebert F., Sakmar T. P. Characterization of the mutant visual pigment responsible for congenital night blindness: a biochemical and Fourier-transform infrared spectroscopy study. Biochemistry. 1996 Jun 11;35(23):7536–7545. doi: 10.1021/bi960391n. [DOI] [PubMed] [Google Scholar]
  59. van Rhee A. M., van der Heijden M. P., Beukers M. W., IJzerman A. P., Soudijn W., Nickel P. Novel competitive antagonists for P2 purinoceptors. Eur J Pharmacol. 1994 Jun 15;268(1):1–7. doi: 10.1016/0922-4106(94)90114-7. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES