Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Feb;82(2):803–812. doi: 10.1016/S0006-3495(02)75442-8

Transport of maltodextrins through maltoporin: a single-channel study.

Lisen Kullman 1, Mathias Winterhalter 1, Sergey M Bezrukov 1
PMCID: PMC1301889  PMID: 11806922

Abstract

Transport of sugars through maltoporin channels reconstituted into planar lipid membranes has traditionally been addressed using multichannel preparations. Here we show that single-channel experiments offer new possibilities to reveal molecular details of the interaction between the sugar and the channel. We analyze time-resolved transient interruptions in the maltoporin ionic current in the presence of differently sized maltodextrins. We find for all studied sugars, from maltotriose to maltoheptaose, that only one sugar molecule is required to completely block one of the pores in the maltoporin trimer. The probability of simultaneous blockage of different pores increases with sugar concentration in a manner that demonstrates their mutual independence. The maltoporin channel is asymmetric and, added from one side only, predominantly inserts in an oriented manner. The asymmetry of the channel structure manifests itself in two ways. First, it is seen as an asymmetrical response to applied voltage at otherwise symmetrical conditions; second, as asymmetrical rates of sugar entry into the channel with asymmetrical (one-sided) sugar addition. Importantly, we find that the sugar residence time in the pore does not depend on which side the sugar is added. This voltage-dependent time is the same for symmetrical, cis, or trans sugar addition. This observation suggests that once a sugar molecule is captured by the "greasy slide" of the channel, it spends enough time there to "forget" from what entrance it was captured. This also means that the blockage events studied here represent sugar translocation events, and not just binding at and release from the same entrance of the channel.

Full Text

The Full Text of this article is available as a PDF (328.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen C., Bachmeyer C., Täuber H., Benz R., Wang J., Michel V., Newton S. M., Hofnung M., Charbit A. In vivo and in vitro studies of major surface loop deletion mutants of the Escherichia coli K-12 maltoporin: contribution to maltose and maltooligosaccharide transport and binding. Mol Microbiol. 1999 May;32(4):851–867. doi: 10.1046/j.1365-2958.1999.01406.x. [DOI] [PubMed] [Google Scholar]
  2. Andersen C., Jordy M., Benz R. Evaluation of the rate constants of sugar transport through maltoporin (LamB) of Escherichia coli from the sugar-induced current noise. J Gen Physiol. 1995 Mar;105(3):385–401. doi: 10.1085/jgp.105.3.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bai C., Wang C., Xie X. S., Wolynes P. G. Single molecule physics and chemistry. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11075–11076. doi: 10.1073/pnas.96.20.11075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benz R., Schmid A., Nakae T., Vos-Scheperkeuter G. H. Pore formation by LamB of Escherichia coli in lipid bilayer membranes. J Bacteriol. 1986 Mar;165(3):978–986. doi: 10.1128/jb.165.3.978-986.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Benz R., Schmid A., Vos-Scheperkeuter G. H. Mechanism of sugar transport through the sugar-specific LamB channel of Escherichia coli outer membrane. J Membr Biol. 1987;100(1):21–29. doi: 10.1007/BF02209137. [DOI] [PubMed] [Google Scholar]
  6. Benz R. Structure and function of porins from gram-negative bacteria. Annu Rev Microbiol. 1988;42:359–393. doi: 10.1146/annurev.mi.42.100188.002043. [DOI] [PubMed] [Google Scholar]
  7. Bezrukov S. M. Ion channels as molecular coulter counters to probe metabolite transport. J Membr Biol. 2000 Mar 1;174(1):1–13. doi: 10.1007/s002320001026. [DOI] [PubMed] [Google Scholar]
  8. Bezrukov S. M., Kullman L., Winterhalter M. Probing sugar translocation through maltoporin at the single channel level. FEBS Lett. 2000 Jul 7;476(3):224–228. doi: 10.1016/s0014-5793(00)01753-1. [DOI] [PubMed] [Google Scholar]
  9. Bezrukov S. M., Vodyanoy I. Probing alamethicin channels with water-soluble polymers. Effect on conductance of channel states. Biophys J. 1993 Jan;64(1):16–25. doi: 10.1016/S0006-3495(93)81336-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bezrukov S. M., Winterhalter M. Examining noise sources at the single-molecule level: 1/f noise of an open maltoporin channel. Phys Rev Lett. 2000 Jul 3;85(1):202–205. doi: 10.1103/PhysRevLett.85.202. [DOI] [PubMed] [Google Scholar]
  11. Boos W., Shuman H. Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation. Microbiol Mol Biol Rev. 1998 Mar;62(1):204–229. doi: 10.1128/mmbr.62.1.204-229.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dargent B., Rosenbusch J., Pattus F. Selectivity for maltose and maltodextrins of maltoporin, a pore-forming protein of E. coli outer membrane. FEBS Lett. 1987 Aug 10;220(1):136–142. doi: 10.1016/0014-5793(87)80891-8. [DOI] [PubMed] [Google Scholar]
  13. Dutzler R., Wang Y. F., Rizkallah P., Rosenbusch J. P., Schirmer T. Crystal structures of various maltooligosaccharides bound to maltoporin reveal a specific sugar translocation pathway. Structure. 1996 Feb 15;4(2):127–134. doi: 10.1016/s0969-2126(96)00016-0. [DOI] [PubMed] [Google Scholar]
  14. Ferenci T., Schwentorat M., Ullrich S., Vilmart J. Lambda receptor in the outer membrane of Escherichia coli as a binding protein for maltodextrins and starch polysaccharides. J Bacteriol. 1980 May;142(2):521–526. doi: 10.1128/jb.142.2.521-526.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ferenci T. Selectivity in solute transport: binding sites and channel structure in maltoporin and other bacterial sugar transport proteins. Bioessays. 1989 Jan;10(1):3–7. doi: 10.1002/bies.950100102. [DOI] [PubMed] [Google Scholar]
  16. Hilty C., Winterhalter M. Facilitated substrate transport through membrane proteins. Phys Rev Lett. 2001 Jun 11;86(24):5624–5627. doi: 10.1103/PhysRevLett.86.5624. [DOI] [PubMed] [Google Scholar]
  17. Jap B. K., Walian P. J. Biophysics of the structure and function of porins. Q Rev Biophys. 1990 Nov;23(4):367–403. doi: 10.1017/s003358350000559x. [DOI] [PubMed] [Google Scholar]
  18. Laughlin R. B., Pines D., Schmalian J., Stojkovic B. P., Wolynes P. The middle way. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):32–37. doi: 10.1073/pnas.97.1.32. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Luckey M., Nikaido H. Specificity of diffusion channels produced by lambda phage receptor protein of Escherichia coli. Proc Natl Acad Sci U S A. 1980 Jan;77(1):167–171. doi: 10.1073/pnas.77.1.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mehta A. D., Rief M., Spudich J. A., Smith D. A., Simmons R. M. Single-molecule biomechanics with optical methods. Science. 1999 Mar 12;283(5408):1689–1695. doi: 10.1126/science.283.5408.1689. [DOI] [PubMed] [Google Scholar]
  21. Merkel R., Nassoy P., Leung A., Ritchie K., Evans E. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature. 1999 Jan 7;397(6714):50–53. doi: 10.1038/16219. [DOI] [PubMed] [Google Scholar]
  22. Meyer J. E., Schulz G. E. Energy profile of maltooligosaccharide permeation through maltoporin as derived from the structure and from a statistical analysis of saccharide-protein interactions. Protein Sci. 1997 May;6(5):1084–1091. doi: 10.1002/pro.5560060515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Montal M., Mueller P. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3561–3566. doi: 10.1073/pnas.69.12.3561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nekolla S., Andersen C., Benz R. Noise analysis of ion current through the open and the sugar-induced closed state of the LamB channel of Escherichia coli outer membrane: evaluation of the sugar binding kinetics to the channel interior. Biophys J. 1994 May;66(5):1388–1397. doi: 10.1016/S0006-3495(94)80929-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nikaido H. Porins and specific channels of bacterial outer membranes. Mol Microbiol. 1992 Feb;6(4):435–442. doi: 10.1111/j.1365-2958.1992.tb01487.x. [DOI] [PubMed] [Google Scholar]
  26. Nikaido H., Vaara M. Molecular basis of bacterial outer membrane permeability. Microbiol Rev. 1985 Mar;49(1):1–32. doi: 10.1128/mr.49.1.1-32.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Perham R. Editorial. Eur J Biochem. 2000 Jan;267(1):1–1. doi: 10.1046/j.1432-1327.2000.02000.x. [DOI] [PubMed] [Google Scholar]
  28. Randall-Hazelbauer L., Schwartz M. Isolation of the bacteriophage lambda receptor from Escherichia coli. J Bacteriol. 1973 Dec;116(3):1436–1446. doi: 10.1128/jb.116.3.1436-1446.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schindler H., Rosenbusch J. P. Matrix protein from Escherichia coli outer membranes forms voltage-controlled channels in lipid bilayers. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3751–3755. doi: 10.1073/pnas.75.8.3751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schirmer T. General and specific porins from bacterial outer membranes. J Struct Biol. 1998;121(2):101–109. doi: 10.1006/jsbi.1997.3946. [DOI] [PubMed] [Google Scholar]
  31. Schirmer T., Keller T. A., Wang Y. F., Rosenbusch J. P. Structural basis for sugar translocation through maltoporin channels at 3.1 A resolution. Science. 1995 Jan 27;267(5197):512–514. doi: 10.1126/science.7824948. [DOI] [PubMed] [Google Scholar]
  32. Schirmer T., Phale P. S. Brownian dynamics simulation of ion flow through porin channels. J Mol Biol. 1999 Dec 17;294(5):1159–1167. doi: 10.1006/jmbi.1999.3326. [DOI] [PubMed] [Google Scholar]
  33. Schulz G. E. Porins: general to specific, native to engineered passive pores. Curr Opin Struct Biol. 1996 Aug;6(4):485–490. doi: 10.1016/s0959-440x(96)80113-8. [DOI] [PubMed] [Google Scholar]
  34. Szmelcman S., Hofnung M. Maltose transport in Escherichia coli K-12: involvement of the bacteriophage lambda receptor. J Bacteriol. 1975 Oct;124(1):112–118. doi: 10.1128/jb.124.1.112-118.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tikhonov D. B., Magazanik L. G. Voltage dependence of open channel blockade: onset and offset rates. J Membr Biol. 1998 Jan 1;161(1):1–8. doi: 10.1007/s002329900309. [DOI] [PubMed] [Google Scholar]
  36. Wandersman C., Schwartz M., Ferenci T. Escherichia coli mutants impaired in maltodextrin transport. J Bacteriol. 1979 Oct;140(1):1–13. doi: 10.1128/jb.140.1.1-13.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Xie X. S., Lu H. P. Single-molecule enzymology. J Biol Chem. 1999 Jun 4;274(23):15967–15970. doi: 10.1074/jbc.274.23.15967. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES