Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Feb;82(2):835–842. doi: 10.1016/S0006-3495(02)75445-3

A concentration-dependent mechanism by which serum albumin inactivates replacement lung surfactants.

H E Warriner 1, J Ding 1, A J Waring 1, J A Zasadzinski 1
PMCID: PMC1301892  PMID: 11806925

Abstract

Endogenous lung surfactant, and lung surfactant replacements used to treat respiratory distress syndrome, can be inactivated during lung edema, most likely by serum proteins. Serum albumin shows a concentration-dependent surface pressure that can exceed the respreading pressure of collapsed monolayers in vitro. Under these conditions, the collapsed surfactant monolayer can not respread to cover the interface, leading to higher minimum surface tensions and alterations in isotherms and morphology. This is an unusual example of a blocked phase transition (collapsed to monolayer form) inhibiting bioactivity. The concentration-dependent surface activity of other common surfactant inhibitors including fibrinogen and lysolipids correlates well with their effectiveness as inhibitors. These results show that respreading pressure may be as important as the minimum surface tension in the design of replacement surfactants for respiratory distress syndrome.

Full Text

The Full Text of this article is available as a PDF (540.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachofen H., Schürch S., Urbinelli M., Weibel E. R. Relations among alveolar surface tension, surface area, volume, and recoil pressure. J Appl Physiol (1985) 1987 May;62(5):1878–1887. doi: 10.1152/jappl.1987.62.5.1878. [DOI] [PubMed] [Google Scholar]
  2. Bernhard W., Mottaghian J., Gebert A., Rau G. A., von Der HARDT H., Poets C. F. Commercial versus native surfactants. Surface activity, molecular components, and the effect of calcium. Am J Respir Crit Care Med. 2000 Oct;162(4 Pt 1):1524–1533. doi: 10.1164/ajrccm.162.4.9908104. [DOI] [PubMed] [Google Scholar]
  3. Ding J., Takamoto D. Y., von Nahmen A., Lipp M. M., Lee K. Y., Waring A. J., Zasadzinski J. A. Effects of lung surfactant proteins, SP-B and SP-C, and palmitic acid on monolayer stability. Biophys J. 2001 May;80(5):2262–2272. doi: 10.1016/S0006-3495(01)76198-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fuchimukai T., Fujiwara T., Takahashi A., Enhorning G. Artificial pulmonary surfactant inhibited by proteins. J Appl Physiol (1985) 1987 Feb;62(2):429–437. doi: 10.1152/jappl.1987.62.2.429. [DOI] [PubMed] [Google Scholar]
  5. Goerke J. Pulmonary surfactant: functions and molecular composition. Biochim Biophys Acta. 1998 Nov 19;1408(2-3):79–89. doi: 10.1016/s0925-4439(98)00060-x. [DOI] [PubMed] [Google Scholar]
  6. Holm B. A., Notter R. H., Finkelstein J. N. Surface property changes from interactions of albumin with natural lung surfactant and extracted lung lipids. Chem Phys Lipids. 1985 Sep;38(3):287–298. doi: 10.1016/0009-3084(85)90022-2. [DOI] [PubMed] [Google Scholar]
  7. Holm B. A., Venkitaraman A. R., Enhorning G., Notter R. H. Biophysical inhibition of synthetic lung surfactants. Chem Phys Lipids. 1990 Feb;52(3-4):243–250. doi: 10.1016/0009-3084(90)90120-g. [DOI] [PubMed] [Google Scholar]
  8. Holm B. A., Wang Z., Notter R. H. Multiple mechanisms of lung surfactant inhibition. Pediatr Res. 1999 Jul;46(1):85–93. doi: 10.1203/00006450-199907000-00015. [DOI] [PubMed] [Google Scholar]
  9. McIntyre R. C., Jr, Pulido E. J., Bensard D. D., Shames B. D., Abraham E. Thirty years of clinical trials in acute respiratory distress syndrome. Crit Care Med. 2000 Sep;28(9):3314–3331. doi: 10.1097/00003246-200009000-00034. [DOI] [PubMed] [Google Scholar]
  10. Mizuno K., Ikegami M., Chen C. M., Ueda T., Jobe A. H. Surfactant protein-B supplementation improves in vivo function of a modified natural surfactant. Pediatr Res. 1995 Mar;37(3):271–276. doi: 10.1203/00006450-199503000-00004. [DOI] [PubMed] [Google Scholar]
  11. Nakos G., Kitsiouli E. I., Tsangaris I., Lekka M. E. Bronchoalveolar lavage fluid characteristics of early intermediate and late phases of ARDS. Alterations in leukocytes, proteins, PAF and surfactant components. Intensive Care Med. 1998 Apr;24(4):296–303. doi: 10.1007/s001340050571. [DOI] [PubMed] [Google Scholar]
  12. Schürch S., Goerke J., Clements J. A. Direct determination of surface tension in the lung. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4698–4702. doi: 10.1073/pnas.73.12.4698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schürch S., Goerke J., Clements J. A. Direct determination of volume- and time-dependence of alveolar surface tension in excised lungs. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3417–3421. doi: 10.1073/pnas.75.7.3417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Seeger W., Stöhr G., Wolf H. R., Neuhof H. Alteration of surfactant function due to protein leakage: special interaction with fibrin monomer. J Appl Physiol (1985) 1985 Feb;58(2):326–338. doi: 10.1152/jappl.1985.58.2.326. [DOI] [PubMed] [Google Scholar]
  15. Tanaka Y., Takei T., Aiba T., Masuda K., Kiuchi A., Fujiwara T. Development of synthetic lung surfactants. J Lipid Res. 1986 May;27(5):475–485. [PubMed] [Google Scholar]
  16. Tschumperlin D. J., Margulies S. S. Alveolar epithelial surface area-volume relationship in isolated rat lungs. J Appl Physiol (1985) 1999 Jun;86(6):2026–2033. doi: 10.1152/jappl.1999.86.6.2026. [DOI] [PubMed] [Google Scholar]
  17. William Taeusch H., Lu K. W., Goerke J., Clements J. A. Nonionic polymers reverse inactivation of surfactant by meconium and other substances. Am J Respir Crit Care Med. 1999 May;159(5 Pt 1):1391–1395. doi: 10.1164/ajrccm.159.5.9808047. [DOI] [PubMed] [Google Scholar]
  18. Wirtz H. R., Dobbs L. G. The effects of mechanical forces on lung functions. Respir Physiol. 2000 Jan;119(1):1–17. doi: 10.1016/s0034-5687(99)00092-4. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES