Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Feb;82(2):852–864. doi: 10.1016/s0006-3495(02)75447-7

Thallous ion movements through gramicidin channels incorporated in lipid monolayers supported by mercury.

Lucia Becucci 1, Maria Rosa Moncelli 1, Rolando Guidelli 1
PMCID: PMC1301894  PMID: 11806927

Abstract

The potential independent limiting flux of hydrated Tl(+) ions through gramicidin (GR) channels incorporated in phospholipid monolayers self assembled on a hanging mercury-drop electrode is shown to be controlled both by diffusion and by a dehydration step. Conversely, the potential independent limiting flux of dehydrated Tl(+) ions stemming from Tl amalgam electro-oxidation is exclusively controlled by diffusion of thallium atoms within the amalgam. Modulating the charge on the polar heads of dioleoylphosphatidylserine (DOPS) by changing pH affects the limiting flux of hydrated Tl(+) ions to a notable extent, primarily by electrostatic interactions. The dipole potential of DOPS and dioleoylphosphatidylcholine (DOPC), positive toward the hydrocarbon tails, does not hinder the translocation step of Tl(+) ions to such an extent as to make it rate limiting. Consequently, incorporation in the lipid monolayer of phloretin, which decreases such a positive dipole potential, does not affect the kinetics of Tl(+) flux through GR channels. In contrast, the increase in the positive dipole potential produced by the incorporation of ketocholestanol causes the translocation step to contribute to the rate of the overall process. A model providing a quantitative interpretation of the kinetics of diffusion, dehydration-hydration, translocation, and charge transfer of the Tl(+)/Tl(0)(Hg) couple through GC channels incorporated in mercury-supported phospholipid monolayers is provided. A cut-off disk model yielding the profile of the local electrostatic potential created by an array of oriented dipoles located in the lipid monolayer along the axis of a cylindrical ion channel is developed.

Full Text

The Full Text of this article is available as a PDF (178.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen O. S., Finkelstein A., Katz I., Cass A. Effect of phloretin on the permeability of thin lipid membranes. J Gen Physiol. 1976 Jun;67(6):749–771. doi: 10.1085/jgp.67.6.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andersen O. S. Ion movement through gramicidin A channels. Studies on the diffusion-controlled association step. Biophys J. 1983 Feb;41(2):147–165. doi: 10.1016/S0006-3495(83)84416-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andersen O. S., Koeppe R. E., 2nd Molecular determinants of channel function. Physiol Rev. 1992 Oct;72(4 Suppl):S89–158. doi: 10.1152/physrev.1992.72.suppl_4.S89. [DOI] [PubMed] [Google Scholar]
  4. Bamberg E., Noda K., Gross E., Läuger P. Single-channel parameters of gramicidin A,B, and C. Biochim Biophys Acta. 1976 Jan 21;419(2):223–228. doi: 10.1016/0005-2736(76)90348-5. [DOI] [PubMed] [Google Scholar]
  5. Busath D. D. The use of physical methods in determining gramicidin channel structure and function. Annu Rev Physiol. 1993;55:473–501. doi: 10.1146/annurev.ph.55.030193.002353. [DOI] [PubMed] [Google Scholar]
  6. Ermakov Y. A., Averbakh A. Z., Yusipovich A. I., Sukharev S. Dipole potentials indicate restructuring of the membrane interface induced by gadolinium and beryllium ions. Biophys J. 2001 Apr;80(4):1851–1862. doi: 10.1016/S0006-3495(01)76155-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Flewelling R. F., Hubbell W. L. The membrane dipole potential in a total membrane potential model. Applications to hydrophobic ion interactions with membranes. Biophys J. 1986 Feb;49(2):541–552. doi: 10.1016/S0006-3495(86)83664-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Franklin J. C., Cafiso D. S. Internal electrostatic potentials in bilayers: measuring and controlling dipole potentials in lipid vesicles. Biophys J. 1993 Jul;65(1):289–299. doi: 10.1016/S0006-3495(93)81051-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gross E., Bedlack R. S., Jr, Loew L. M. Dual-wavelength ratiometric fluorescence measurement of the membrane dipole potential. Biophys J. 1994 Jul;67(1):208–216. doi: 10.1016/S0006-3495(94)80471-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Herrero R., Moncelli M. R., Guidelli R., Carlà M., Arcangeli A., Olivotto M. Hybrid polar compounds produce a positive shift in the surface dipole potential of self-assembled phospholipid monolayers. Biochim Biophys Acta. 2000 Jun 1;1466(1-2):278–288. doi: 10.1016/s0005-2736(00)00181-4. [DOI] [PubMed] [Google Scholar]
  11. Hinton J. F., Fernandez J. Q., Shungu D. C., Whaley W. L., Koeppe R. E., 2nd, Millett F. S. TI-205 nuclear magnetic resonance determination of the thermodynamic parameters for the binding of monovalent cations to gramicidins A and C. Biophys J. 1988 Sep;54(3):527–533. doi: 10.1016/S0006-3495(88)82985-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hinton J. F., Whaley W. L., Shungu D., Koeppe R. E., 2nd, Millett F. S. Equilibrium binding constants for the group I metal cations with gramicidin-A determined by competition studies and T1+-205 nuclear magnetic resonance spectroscopy. Biophys J. 1986 Sep;50(3):539–544. doi: 10.1016/S0006-3495(86)83492-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hladky S. B. Ion currents through pores. The roles of diffusion and external access steps in determining the currents through narrow pores. Biophys J. 1984 Sep;46(3):293–297. doi: 10.1016/S0006-3495(84)84025-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jordan P. C. Electrostatic modeling of ion pores. II. Effects attributable to the membrane dipole potential. Biophys J. 1983 Feb;41(2):189–195. doi: 10.1016/S0006-3495(83)84419-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Killian J. A. Gramicidin and gramicidin-lipid interactions. Biochim Biophys Acta. 1992 Dec 11;1113(3-4):391–425. doi: 10.1016/0304-4157(92)90008-x. [DOI] [PubMed] [Google Scholar]
  16. Koeppe R. E., 2nd, Anderson O. S. Engineering the gramicidin channel. Annu Rev Biophys Biomol Struct. 1996;25:231–258. doi: 10.1146/annurev.bb.25.060196.001311. [DOI] [PubMed] [Google Scholar]
  17. Lecompte M. F., Bras A. C., Dousset N., Portas I., Salvayre R., Ayrault-Jarrier M. Binding steps of apolipoprotein A-I with phospholipid monolayers: adsorption and penetration. Biochemistry. 1998 Nov 17;37(46):16165–16171. doi: 10.1021/bi9813072. [DOI] [PubMed] [Google Scholar]
  18. Lecompte M. F., Miller I. R., Elion J., Benarous R. Interaction of prothrombin and its fragments with monolayers containing phosphatidylserine. 1. Binding of prothrombin and its fragment I to phosphatidylserine-containing monolayers. Biochemistry. 1980 Jul 22;19(15):3434–3439. doi: 10.1021/bi00556a005. [DOI] [PubMed] [Google Scholar]
  19. Lelkes P. I., Miller I. R. Perturbations of membrane structure by optical probes: I. Location and structural sensitivity of merocyanine 540 bound to phospholipid membranes. J Membr Biol. 1980 Jan 31;52(1):1–15. doi: 10.1007/BF01869001. [DOI] [PubMed] [Google Scholar]
  20. Levitt D. G. Electrostatic calculations for an ion channel. II. Kinetic behavior of the gramicidin A channel. Biophys J. 1978 May;22(2):221–248. doi: 10.1016/S0006-3495(78)85486-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Läuger P. Diffusion-limited ion flow through pores. Biochim Biophys Acta. 1976 Dec 2;455(2):493–509. doi: 10.1016/0005-2736(76)90320-5. [DOI] [PubMed] [Google Scholar]
  22. Malkov D. Y., Sokolov V. S. Fluorescent styryl dyes of the RH series affect a potential drop on the membrane/solution boundary. Biochim Biophys Acta. 1996 Jan 31;1278(2):197–204. doi: 10.1016/0005-2736(95)00197-2. [DOI] [PubMed] [Google Scholar]
  23. Melnik E., Latorre R., Hall J. E., Tosteson D. C. Phloretin-induced changes in ion transport across lipid bilayer membranes. J Gen Physiol. 1977 Feb;69(2):243–257. doi: 10.1085/jgp.69.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Miller I. R., Bach D. Structure and membrane properties of lecithin monolayers at the polarized mercury-water interface. J Colloid Interface Sci. 1969 Feb;29(2):250–260. doi: 10.1016/0021-9797(69)90194-5. [DOI] [PubMed] [Google Scholar]
  25. Miller I. R., Bach D., Teuber M. Effect of polymyxin B on the structure and the stability of lipid layers. J Membr Biol. 1978 Feb 6;39(1):49–56. doi: 10.1007/BF01872754. [DOI] [PubMed] [Google Scholar]
  26. Moncelli M. R., Becucci L., Buoninsegni F. T., Guidelli R. Surface dipole potential at the interface between water and self-assembled monolayers of phosphatidylserine and phosphatidic acid. Biophys J. 1998 May;74(5):2388–2397. doi: 10.1016/S0006-3495(98)77947-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Moncelli M. R., Becucci L., Guidelli R. The intrinsic pKa values for phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine in monolayers deposited on mercury electrodes. Biophys J. 1994 Jun;66(6):1969–1980. doi: 10.1016/S0006-3495(94)80990-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Moncelli M. R., Becucci L., Nelson A., Guidelli R. Electrochemical modeling of electron and proton transfer to ubiquinone-10 in a self-assembled phospholipid monolayer. Biophys J. 1996 Jun;70(6):2716–2726. doi: 10.1016/S0006-3495(96)79841-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Moncelli M. R., Herrero R., Becucci L., Guidelli R. Kinetics of electron and proton transfer to ubiquinone-10 and from ubiquinol-10 in a self-assembled phosphatidylcholine monolayer. Biochim Biophys Acta. 1998 May 27;1364(3):373–384. doi: 10.1016/s0005-2728(98)00061-9. [DOI] [PubMed] [Google Scholar]
  30. Pohl P., Rokitskaya T. I., Pohl E. E., Saparov S. M. Permeation of phloretin across bilayer lipid membranes monitored by dipole potential and microelectrode measurements. Biochim Biophys Acta. 1997 Jan 31;1323(2):163–172. doi: 10.1016/s0005-2736(96)00185-x. [DOI] [PubMed] [Google Scholar]
  31. Providence L. L., Andersen O. S., Greathouse D. V., Koeppe R. E., 2nd, Bittman R. Gramicidin channel function does not depend on phospholipid chirality. Biochemistry. 1995 Dec 19;34(50):16404–16411. doi: 10.1021/bi00050a022. [DOI] [PubMed] [Google Scholar]
  32. Rokitskaya T. I., Antonenko Y. N., Kotova E. A. Effect of the dipole potential of a bilayer lipid membrane on gramicidin channel dissociation kinetics. Biophys J. 1997 Aug;73(2):850–854. doi: 10.1016/S0006-3495(97)78117-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sandblom J., Eisenman G., Neher E. Ionic selectivity, saturation and block in gramicidin A channels: I. Theory for the electrical properties of ion selective channels having two pairs of binding sites and multiple conductance states. J Membr Biol. 1977 Mar 23;31(4):383–347. doi: 10.1007/BF01869414. [DOI] [PubMed] [Google Scholar]
  34. Seoh S. A., Busath D. Gramicidin tryptophans mediate formamidinium-induced channel stabilization. Biophys J. 1995 Jun;68(6):2271–2279. doi: 10.1016/S0006-3495(95)80409-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tredgold R. H., Hole P. N. Dielectric behaviour of dry synthetic polypeptides. Biochim Biophys Acta. 1976 Aug 4;443(1):137–142. doi: 10.1016/0005-2736(76)90497-1. [DOI] [PubMed] [Google Scholar]
  36. Urban B. W., Hladky S. B., Haydon D. A. Ion movements in gramicidin pores. An example of single-file transport. Biochim Biophys Acta. 1980 Nov 4;602(2):331–354. doi: 10.1016/0005-2736(80)90316-8. [DOI] [PubMed] [Google Scholar]
  37. Wallace B. A. The roles of tryptophan residues in the structure, function, and folding of the gramicidin transmembrane ion channel. Adv Exp Med Biol. 1996;398:607–614. doi: 10.1007/978-1-4613-0381-7_100. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES