Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Feb;82(2):865–873. doi: 10.1016/S0006-3495(02)75448-9

Membrane dipole potential modulates proton conductance through gramicidin channel: movement of negative ionic defects inside the channel.

Tatyana I Rokitskaya 1, Elena A Kotova 1, Yuri N Antonenko 1
PMCID: PMC1301895  PMID: 11806928

Abstract

The effect of membrane dipole potential on gramicidin channel activity in bilayer lipid membranes (BLMs) was studied. Remarkably, it appeared that proton conductance of gramicidin A (gA) channels responded to modulation of the dipole potential oppositely as compared with gA alkali metal cation conductance. In particular, the addition of phloretin, known to reduce the membrane dipole potential, resulted in a decrease in gA proton conductance, on one hand, and an increase in gA alkali metal conductance, on the other hand, whereas 6-ketocholestanol, the agent raising the membrane dipole potential, provoked an increase in gA proton conductance as opposed to a decrease in the alkali metal cation conductance. The peculiarity of the 6-ketocholestanol effect consisted in its dependence on the H(+) concentration. The experiments with the impermeant dipolar compound, phloridzin, showed that the response of proton transport through gramicidin channels to varying the membrane dipole potential did not change qualitatively if the dipole potential of only one monolayer or both monolayers of the BLM was altered. In contrast to gA proton conductance, the single-channel lifetime changed similarly with varying the membrane dipole potential, regardless of the kind of permeant cations (protons or potassium ions). The results of this study could be tentatively accounted for by an assumption that one of the rate-limiting steps of proton conduction through gramicidin channels represents, in fact, movement of negatively charged species (negative ionic defects) across a membrane.

Full Text

The Full Text of this article is available as a PDF (244.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akeson M., Deamer D. W. Proton conductance by the gramicidin water wire. Model for proton conductance in the F1F0 ATPases? Biophys J. 1991 Jul;60(1):101–109. doi: 10.1016/S0006-3495(91)82034-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alakoskela J. I., Kinnunen P. K. Control of a redox reaction on lipid bilayer surfaces by membrane dipole potential. Biophys J. 2001 Jan;80(1):294–304. doi: 10.1016/S0006-3495(01)76014-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alvarez O., Brodwick M., Latorre R., McLaughlin A., McLaughlin S., Szabo G. Large divalent cations and electrostatic potentials adjacent to membranes. Experimental results with hexamethonium. Biophys J. 1983 Dec;44(3):333–342. doi: 10.1016/S0006-3495(83)84307-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Andersen O. S., Apell H. J., Bamberg E., Busath D. D., Koeppe R. E., 2nd, Sigworth F. J., Szabo G., Urry D. W., Woolley A. Gramicidin channel controversy--the structure in a lipid environment. Nat Struct Biol. 1999 Jul;6(7):609–612. doi: 10.1038/10648. [DOI] [PubMed] [Google Scholar]
  5. Andersen O. S., Finkelstein A., Katz I., Cass A. Effect of phloretin on the permeability of thin lipid membranes. J Gen Physiol. 1976 Jun;67(6):749–771. doi: 10.1085/jgp.67.6.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Andersen O. S. Ion movement through gramicidin A channels. Single-channel measurements at very high potentials. Biophys J. 1983 Feb;41(2):119–133. doi: 10.1016/S0006-3495(83)84414-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Andersen O. S. Ion movement through gramicidin A channels. Studies on the diffusion-controlled association step. Biophys J. 1983 Feb;41(2):147–165. doi: 10.1016/S0006-3495(83)84416-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Antonenko Y. N., Rokitskaya T. I., Kotova E. A. Effect of dipole modifiers on the kinetics of sensitized photoinactivation of gramicidin channels in bilayer lipid membranes. Membr Cell Biol. 1999;13(1):111–120. [PubMed] [Google Scholar]
  9. Apell H. J., Bamberg E., Läuger P. Effects of surface charge on the conductance of the gramicidin channel. Biochim Biophys Acta. 1979 Apr 19;552(3):369–378. doi: 10.1016/0005-2736(79)90181-0. [DOI] [PubMed] [Google Scholar]
  10. Bamberg E., Noda K., Gross E., Läuger P. Single-channel parameters of gramicidin A,B, and C. Biochim Biophys Acta. 1976 Jan 21;419(2):223–228. doi: 10.1016/0005-2736(76)90348-5. [DOI] [PubMed] [Google Scholar]
  11. Bechinger B., Seelig J. Interaction of electric dipoles with phospholipid head groups. A 2H and 31P NMR study of phloretin and phloretin analogues in phosphatidylcholine membranes. Biochemistry. 1991 Apr 23;30(16):3923–3929. doi: 10.1021/bi00230a017. [DOI] [PubMed] [Google Scholar]
  12. Becker M. D., Greathouse D. V., Koeppe R. E., 2nd, Andersen O. S. Amino acid sequence modulation of gramicidin channel function: effects of tryptophan-to-phenylalanine substitutions on the single-channel conductance and duration. Biochemistry. 1991 Sep 10;30(36):8830–8839. doi: 10.1021/bi00100a015. [DOI] [PubMed] [Google Scholar]
  13. Busath D. D. The use of physical methods in determining gramicidin channel structure and function. Annu Rev Physiol. 1993;55:473–501. doi: 10.1146/annurev.ph.55.030193.002353. [DOI] [PubMed] [Google Scholar]
  14. Busath D. D., Thulin C. D., Hendershot R. W., Phillips L. R., Maughan P., Cole C. D., Bingham N. C., Morrison S., Baird L. C., Hendershot R. J. Noncontact dipole effects on channel permeation. I. Experiments with (5F-indole)Trp13 gramicidin A channels. Biophys J. 1998 Dec;75(6):2830–2844. doi: 10.1016/S0006-3495(98)77726-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Busath D., Szabo G. Permeation characteristics of gramicidin conformers. Biophys J. 1988 May;53(5):697–707. doi: 10.1016/S0006-3495(88)83151-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Cseh R., Benz R. Interaction of phloretin with lipid monolayers: relationship between structural changes and dipole potential change. Biophys J. 1999 Sep;77(3):1477–1488. doi: 10.1016/S0006-3495(99)76995-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Cukierman S. Proton mobilities in water and in different stereoisomers of covalently linked gramicidin A channels. Biophys J. 2000 Apr;78(4):1825–1834. doi: 10.1016/S0006-3495(00)76732-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Cukierman S., Quigley E. P., Crumrine D. S. Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers. Biophys J. 1997 Nov;73(5):2489–2502. doi: 10.1016/S0006-3495(97)78277-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. DeCoursey T. E., Cherny V. V. Common themes and problems of bioenergetics and voltage-gated proton channels. Biochim Biophys Acta. 2000 May 12;1458(1):104–119. doi: 10.1016/s0005-2728(00)00062-1. [DOI] [PubMed] [Google Scholar]
  20. Deamer D. W. Proton permeation of lipid bilayers. J Bioenerg Biomembr. 1987 Oct;19(5):457–479. doi: 10.1007/BF00770030. [DOI] [PubMed] [Google Scholar]
  21. Decker E. R., Levitt D. G. Use of weak acids to determine the bulk diffusion limitation of H+ ion conductance through the gramicidin channel. Biophys J. 1988 Jan;53(1):25–32. doi: 10.1016/S0006-3495(88)83062-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Eisenman G., Enos B., Hägglund J., Sandblom J. Gramicidin as an example of a single-filing ionic channel. Ann N Y Acad Sci. 1980;339:8–20. doi: 10.1111/j.1749-6632.1980.tb15964.x. [DOI] [PubMed] [Google Scholar]
  23. Finkelstein A., Andersen O. S. The gramicidin A channel: a review of its permeability characteristics with special reference to the single-file aspect of transport. J Membr Biol. 1981 Apr 30;59(3):155–171. doi: 10.1007/BF01875422. [DOI] [PubMed] [Google Scholar]
  24. Franklin J. C., Cafiso D. S. Internal electrostatic potentials in bilayers: measuring and controlling dipole potentials in lipid vesicles. Biophys J. 1993 Jul;65(1):289–299. doi: 10.1016/S0006-3495(93)81051-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Fuks B., Homblé F. Mechanism of proton permeation through chloroplast lipid membranes. Plant Physiol. 1996 Oct;112(2):759–766. doi: 10.1104/pp.112.2.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Gutknecht J. Proton conductance through phospholipid bilayers: water wires or weak acids? J Bioenerg Biomembr. 1987 Oct;19(5):427–442. doi: 10.1007/BF00770028. [DOI] [PubMed] [Google Scholar]
  27. Gutknecht J. Proton/hydroxide conductance and permeability through phospholipid bilayer membranes. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6443–6446. doi: 10.1073/pnas.84.18.6443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Heinemann S. H., Sigworth F. J. Estimation of Na+ dwell time in the gramicidin A channel. Na+ ions as blockers of H+ currents. Biochim Biophys Acta. 1989 Dec 11;987(1):8–14. doi: 10.1016/0005-2736(89)90448-3. [DOI] [PubMed] [Google Scholar]
  29. Heitz F., Spach G., Trudelle Y. Single channels of 9, 11, 13, 15-destryptophyl-phenylalanyl-gramicidin A. Biophys J. 1982 Oct;40(1):87–89. doi: 10.1016/S0006-3495(82)84462-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Hladky S. B., Haydon D. A. Ion transfer across lipid membranes in the presence of gramicidin A. I. Studies of the unit conductance channel. Biochim Biophys Acta. 1972 Aug 9;274(2):294–312. doi: 10.1016/0005-2736(72)90178-2. [DOI] [PubMed] [Google Scholar]
  31. Hu W., Cross T. A. Tryptophan hydrogen bonding and electric dipole moments: functional roles in the gramicidin channel and implications for membrane proteins. Biochemistry. 1995 Oct 31;34(43):14147–14155. doi: 10.1021/bi00043a020. [DOI] [PubMed] [Google Scholar]
  32. Kolb H. A., Bamberg E. Influence of membrane thickness and ion concentration on the properties of the gramicidin a channel. Autocorrelation, spectral power density, relaxation and single-channel studies. Biochim Biophys Acta. 1977 Jan 4;464(1):127–141. doi: 10.1016/0005-2736(77)90376-5. [DOI] [PubMed] [Google Scholar]
  33. Kotova E. A., Rokitskaya T. I., Antonenko YuN Two phases of gramicidin photoinactivation in bilayer lipid membranes in the presence of a photosensitizer. Membr Cell Biol. 2000;13(3):411–420. [PubMed] [Google Scholar]
  34. Kunz L., Zeidler U., Haegele K., Przybylski M., Stark G. Photodynamic and radiolytic inactivation of ion channels formed by gramicidin A: oxidation and fragmentation. Biochemistry. 1995 Sep 19;34(37):11895–11903. doi: 10.1021/bi00037a030. [DOI] [PubMed] [Google Scholar]
  35. Levitt D. G., Elias S. R., Hautman J. M. Number of water molecules coupled to the transport of sodium, potassium and hydrogen ions via gramicidin, nonactin or valinomycin. Biochim Biophys Acta. 1978 Sep 22;512(2):436–451. doi: 10.1016/0005-2736(78)90266-3. [DOI] [PubMed] [Google Scholar]
  36. Malkov D. Y., Sokolov V. S. Fluorescent styryl dyes of the RH series affect a potential drop on the membrane/solution boundary. Biochim Biophys Acta. 1996 Jan 31;1278(2):197–204. doi: 10.1016/0005-2736(95)00197-2. [DOI] [PubMed] [Google Scholar]
  37. Melnik E., Latorre R., Hall J. E., Tosteson D. C. Phloretin-induced changes in ion transport across lipid bilayer membranes. J Gen Physiol. 1977 Feb;69(2):243–257. doi: 10.1085/jgp.69.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Mittler-Neher S., Knoll W. Ca(2+)-induced lateral phase separation in black lipid membranes and its coupling to the ion translocation by gramicidin. Biochim Biophys Acta. 1993 Nov 7;1152(2):259–269. doi: 10.1016/0005-2736(93)90257-z. [DOI] [PubMed] [Google Scholar]
  39. Myers V. B., Haydon D. A. Ion transfer across lipid membranes in the presence of gramicidin A. II. The ion selectivity. Biochim Biophys Acta. 1972 Aug 9;274(2):313–322. doi: 10.1016/0005-2736(72)90179-4. [DOI] [PubMed] [Google Scholar]
  40. Nagle J. F., Morowitz H. J. Molecular mechanisms for proton transport in membranes. Proc Natl Acad Sci U S A. 1978 Jan;75(1):298–302. doi: 10.1073/pnas.75.1.298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Nagle J. F. Theory of passive proton conductance in lipid bilayers. J Bioenerg Biomembr. 1987 Oct;19(5):413–426. doi: 10.1007/BF00770027. [DOI] [PubMed] [Google Scholar]
  42. Nagle J. F., Tristram-Nagle S. Hydrogen bonded chain mechanisms for proton conduction and proton pumping. J Membr Biol. 1983;74(1):1–14. doi: 10.1007/BF01870590. [DOI] [PubMed] [Google Scholar]
  43. Neher E., Sandblom J., Eisenman G. Ionic selectivity, saturation, and block in gramicidin A channels. II. Saturation behavior of single channel conductances and evidence for the existence of multiple binding sites in the channel. J Membr Biol. 1978 Apr 26;40(2):97–116. doi: 10.1007/BF01871143. [DOI] [PubMed] [Google Scholar]
  44. Perkins W. R., Cafiso D. S. An electrical and structural characterization of H+/OH- currents in phospholipid vesicles. Biochemistry. 1986 Apr 22;25(8):2270–2276. doi: 10.1021/bi00356a063. [DOI] [PubMed] [Google Scholar]
  45. Perkins W. R., Cafiso D. S. Characterization of H+/OH- currents in phospholipid vesicles. J Bioenerg Biomembr. 1987 Oct;19(5):443–455. doi: 10.1007/BF00770029. [DOI] [PubMed] [Google Scholar]
  46. Phillips L. R., Cole C. D., Hendershot R. J., Cotten M., Cross T. A., Busath D. D. Noncontact dipole effects on channel permeation. III. Anomalous proton conductance effects in gramicidin. Biophys J. 2008 Nov 21;77(5):2492–2501. doi: 10.1016/S0006-3495(99)77085-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Pohl P., Rokitskaya T. I., Pohl E. E., Saparov S. M. Permeation of phloretin across bilayer lipid membranes monitored by dipole potential and microelectrode measurements. Biochim Biophys Acta. 1997 Jan 31;1323(2):163–172. doi: 10.1016/s0005-2736(96)00185-x. [DOI] [PubMed] [Google Scholar]
  48. Pomès R., Roux B. Free energy profiles for H+ conduction along hydrogen-bonded chains of water molecules. Biophys J. 1998 Jul;75(1):33–40. doi: 10.1016/S0006-3495(98)77492-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Pomès R., Roux B. Structure and dynamics of a proton wire: a theoretical study of H+ translocation along the single-file water chain in the gramicidin A channel. Biophys J. 1996 Jul;71(1):19–39. doi: 10.1016/S0006-3495(96)79211-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Providence L. L., Andersen O. S., Greathouse D. V., Koeppe R. E., 2nd, Bittman R. Gramicidin channel function does not depend on phospholipid chirality. Biochemistry. 1995 Dec 19;34(50):16404–16411. doi: 10.1021/bi00050a022. [DOI] [PubMed] [Google Scholar]
  51. Rahmann H., Schifferer F., Beitinger H. Calcium-ganglioside interactions and synaptic plasticity: effect of calcium on specific ganglioside/peptide (valinomycin, gramicidin A)-complexes in mixed mono- and bilayers. Neurochem Int. 1992 Apr;20(3):323–338. doi: 10.1016/0197-0186(92)90047-u. [DOI] [PubMed] [Google Scholar]
  52. Rokitskaya T. I., Antonenko Y. N., Kotova E. A. Effect of the dipole potential of a bilayer lipid membrane on gramicidin channel dissociation kinetics. Biophys J. 1997 Aug;73(2):850–854. doi: 10.1016/S0006-3495(97)78117-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Rokitskaya T. I., Antonenko Y. N., Kotova E. A. Photodynamic inactivation of gramicidin channels:a flash-photolysis study. Biochim Biophys Acta. 1996 Jul 31;1275(3):221–226. doi: 10.1016/0005-2728(96)00025-4. [DOI] [PubMed] [Google Scholar]
  54. Rokitskaya T. I., Antonenko Y. N., Kotova E. A. The interaction of phthalocyanine with planar lipid bilayers. Photodynamic inactivation of gramicidin channels. FEBS Lett. 1993 Aug 30;329(3):332–335. doi: 10.1016/0014-5793(93)80248-s. [DOI] [PubMed] [Google Scholar]
  55. Rostovtseva T. K., Aguilella V. M., Vodyanoy I., Bezrukov S. M., Parsegian V. A. Membrane surface-charge titration probed by gramicidin A channel conductance. Biophys J. 1998 Oct;75(4):1783–1792. doi: 10.1016/S0006-3495(98)77620-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Sagnella D. E., Voth G. A. Structure and dynamics of hydronium in the ion channel gramicidin A. Biophys J. 1996 May;70(5):2043–2051. doi: 10.1016/S0006-3495(96)79773-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Schumaker M. F., Pomès R., Roux B. Framework model for single proton conduction through gramicidin. Biophys J. 2001 Jan;80(1):12–30. doi: 10.1016/S0006-3495(01)75992-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Seoh S. A., Busath D. Gramicidin tryptophans mediate formamidinium-induced channel stabilization. Biophys J. 1995 Jun;68(6):2271–2279. doi: 10.1016/S0006-3495(95)80409-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Simon S. A., McIntosh T. J., Magid A. D., Needham D. Modulation of the interbilayer hydration pressure by the addition of dipoles at the hydrocarbon/water interface. Biophys J. 1992 Mar;61(3):786–799. doi: 10.1016/S0006-3495(92)81883-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Sokolov V. S., Chernyi V. V., Markin V. S. Izmerenie skachkov potentsiala pri adsorbtsii floretina i floretsina na poverkhnosti lipidnykh membran metodom kompensatsii vnutrimembrannogo polia. Biofizika. 1984 May-Jun;29(3):424–429. [PubMed] [Google Scholar]
  61. Strässle M., Stark G. Photodynamic inactivation of an ion channel: gramicidin A. Photochem Photobiol. 1992 Mar;55(3):461–463. doi: 10.1111/j.1751-1097.1992.tb04262.x. [DOI] [PubMed] [Google Scholar]
  62. Woolley G. A., Zunic V., Karanicolas J., Jaikaran A. S., Starostin A. V. Voltage-dependent behavior of a "ball-and-chain" gramicidin channel. Biophys J. 1997 Nov;73(5):2465–2475. doi: 10.1016/S0006-3495(97)78275-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Zingsheim H. P., Neher E. The equivalence of fluctuation analysis and chemical relaxation measurements: a kinetic study of ion pore formation in thin lipid membranes. Biophys Chem. 1974 Oct;2(3):197–207. doi: 10.1016/0301-4622(74)80045-1. [DOI] [PubMed] [Google Scholar]
  64. de Godoy C. M., Cukierman S. Modulation of proton transfer in the water wire of dioxolane-linked gramicidin channels by lipid membranes. Biophys J. 2001 Sep;81(3):1430–1438. doi: 10.1016/s0006-3495(01)75798-0. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES