Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Feb;82(2):874–881. doi: 10.1016/S0006-3495(02)75449-0

A mechanism for stabilization of membranes at low temperatures by an antifreeze protein.

Melanie M Tomczak 1, Dirk K Hincha 1, Sergio D Estrada 1, Willem F Wolkers 1, Lois M Crowe 1, Robert E Feeney 1, Fern Tablin 1, John H Crowe 1
PMCID: PMC1301896  PMID: 11806929

Abstract

Polar fish, cold hardy plants, and overwintering insects produce antifreeze proteins (AFPs), which lower the freezing point of solutions noncolligatively and inhibit ice crystal growth. Fish AFPs have been shown to stabilize membranes and cells in vitro during hypothermic storage, probably by interacting with the plasma membrane, but the mechanism of this stabilization has not been clear. We show here that during chilling to nonfreezing temperatures the alpha-helical AFP type I from polar fish inhibits leakage across model membranes containing an unsaturated chloroplast galactolipid. The mechanism involves binding of the AFP to the bilayer, which increases the phase transition temperature of the membranes and alters the molecular packing of the acyl chains. We suggest that this change in acyl chain packing results in the reduced membrane permeability. The data suggest a hydrophobic interaction between the peptide and the bilayer. Further, we suggest that the expression of AFP type I in transgenic plants may be significant for thermal adaptation of chilling-sensitive plants.

Full Text

The Full Text of this article is available as a PDF (139.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baardsnes J., Kondejewski L. H., Hodges R. S., Chao H., Kay C., Davies P. L. New ice-binding face for type I antifreeze protein. FEBS Lett. 1999 Dec 10;463(1-2):87–91. doi: 10.1016/s0014-5793(99)01588-4. [DOI] [PubMed] [Google Scholar]
  2. Chao H., Houston M. E., Jr, Hodges R. S., Kay C. M., Sykes B. D., Loewen M. C., Davies P. L., Sönnichsen F. D. A diminished role for hydrogen bonds in antifreeze protein binding to ice. Biochemistry. 1997 Dec 2;36(48):14652–14660. doi: 10.1021/bi970817d. [DOI] [PubMed] [Google Scholar]
  3. Chapman D., Urbina J. Biomembrane phase transitions. Studies of lipid-water systems using differential scanning calorimetry. J Biol Chem. 1974 Apr 25;249(8):2512–2521. [PubMed] [Google Scholar]
  4. Clerc S. G., Thompson T. E. Permeability of dimyristoyl phosphatidylcholine/dipalmitoyl phosphatidylcholine bilayer membranes with coexisting gel and liquid-crystalline phases. Biophys J. 1995 Jun;68(6):2333–2341. doi: 10.1016/S0006-3495(95)80415-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Crowe J. H., Tablin F., Tsvetkova N., Oliver A. E., Walker N., Crowe L. M. Are lipid phase transitions responsible for chilling damage in human platelets? Cryobiology. 1999 May;38(3):180–191. doi: 10.1006/cryo.1998.2137. [DOI] [PubMed] [Google Scholar]
  6. Davies P. L., Sykes B. D. Antifreeze proteins. Curr Opin Struct Biol. 1997 Dec;7(6):828–834. doi: 10.1016/s0959-440x(97)80154-6. [DOI] [PubMed] [Google Scholar]
  7. Dempsey C. E. The actions of melittin on membranes. Biochim Biophys Acta. 1990 May 7;1031(2):143–161. doi: 10.1016/0304-4157(90)90006-x. [DOI] [PubMed] [Google Scholar]
  8. Doucet C. J., Byass L., Elias L., Worrall D., Smallwood M., Bowles D. J. Distribution and characterization of recrystallization inhibitor activity in plant and lichen species from the UK and maritime Antarctic. Cryobiology. 2000 May;40(3):218–227. doi: 10.1006/cryo.2000.2241. [DOI] [PubMed] [Google Scholar]
  9. Duman J. G. Purification and characterization of a thermal hysteresis protein from a plant, the bittersweet nightshade Solanum dulcamara. Biochim Biophys Acta. 1994 May 18;1206(1):129–135. doi: 10.1016/0167-4838(94)90081-7. [DOI] [PubMed] [Google Scholar]
  10. Epand R. M., Shai Y., Segrest J. P., Anantharamaiah G. M. Mechanisms for the modulation of membrane bilayer properties by amphipathic helical peptides. Biopolymers. 1995;37(5):319–338. doi: 10.1002/bip.360370504. [DOI] [PubMed] [Google Scholar]
  11. Graham L. A., Liou Y. C., Walker V. K., Davies P. L. Hyperactive antifreeze protein from beetles. Nature. 1997 Aug 21;388(6644):727–728. doi: 10.1038/41908. [DOI] [PubMed] [Google Scholar]
  12. Haymet A. D., Ward L. G., Harding M. M., Knight C. A. Valine substituted winter flounder 'antifreeze': preservation of ice growth hysteresis. FEBS Lett. 1998 Jul 3;430(3):301–306. doi: 10.1016/s0014-5793(98)00652-8. [DOI] [PubMed] [Google Scholar]
  13. Hays L. M., Crowe J. H., Wolkers W., Rudenko S. Factors affecting leakage of trapped solutes from phospholipid vesicles during thermotropic phase transitions. Cryobiology. 2001 Mar;42(2):88–102. doi: 10.1006/cryo.2001.2307. [DOI] [PubMed] [Google Scholar]
  14. Hays L. M., Feeney R. E., Crowe L. M., Crowe J. H., Oliver A. E. Antifreeze glycoproteins inhibit leakage from liposomes during thermotropic phase transitions. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6835–6840. doi: 10.1073/pnas.93.13.6835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hightower R., Baden C., Penzes E., Lund P., Dunsmuir P. Expression of antifreeze proteins in transgenic plants. Plant Mol Biol. 1991 Nov;17(5):1013–1021. doi: 10.1007/BF00037141. [DOI] [PubMed] [Google Scholar]
  16. Hincha D. K., DeVries A. L., Schmitt J. M. Cryotoxicity of antifreeze proteins and glycoproteins to spinach thylakoid membranes--comparison with cryotoxic sugar acids. Biochim Biophys Acta. 1993 Mar 14;1146(2):258–264. doi: 10.1016/0005-2736(93)90364-6. [DOI] [PubMed] [Google Scholar]
  17. Hincha D. K., Oliver A. E., Crowe J. H. Lipid composition determines the effects of arbutin on the stability of membranes. Biophys J. 1999 Oct;77(4):2024–2034. doi: 10.1016/S0006-3495(99)77043-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kaiser R. D., London E. Location of diphenylhexatriene (DPH) and its derivatives within membranes: comparison of different fluorescence quenching analyses of membrane depth. Biochemistry. 1998 Jun 2;37(22):8180–8190. doi: 10.1021/bi980064a. [DOI] [PubMed] [Google Scholar]
  19. Kenward K. D., Altschuler M., Hildebrand D., Davies P. L. Accumulation of type I fish antifreeze protein in transgenic tobacco is cold-specific. Plant Mol Biol. 1993 Oct;23(2):377–385. doi: 10.1007/BF00029012. [DOI] [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Lentz B. R. Use of fluorescent probes to monitor molecular order and motions within liposome bilayers. Chem Phys Lipids. 1993 Sep;64(1-3):99–116. doi: 10.1016/0009-3084(93)90060-g. [DOI] [PubMed] [Google Scholar]
  22. MacDonald R. C., MacDonald R. I., Menco B. P., Takeshita K., Subbarao N. K., Hu L. R. Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim Biophys Acta. 1991 Jan 30;1061(2):297–303. doi: 10.1016/0005-2736(91)90295-j. [DOI] [PubMed] [Google Scholar]
  23. Mantsch H. H., McElhaney R. N. Phospholipid phase transitions in model and biological membranes as studied by infrared spectroscopy. Chem Phys Lipids. 1991 Mar;57(2-3):213–226. doi: 10.1016/0009-3084(91)90077-o. [DOI] [PubMed] [Google Scholar]
  24. Mendelsohn R., Moore D. J. Vibrational spectroscopic studies of lipid domains in biomembranes and model systems. Chem Phys Lipids. 1998 Nov;96(1-2):141–157. doi: 10.1016/s0009-3084(98)00085-1. [DOI] [PubMed] [Google Scholar]
  25. Meyer K., Keil M., Naldrett M. J. A leucine-rich repeat protein of carrot that exhibits antifreeze activity. FEBS Lett. 1999 Mar 26;447(2-3):171–178. doi: 10.1016/s0014-5793(99)00280-x. [DOI] [PubMed] [Google Scholar]
  26. Quinn P. J. A lipid-phase separation model of low-temperature damage to biological membranes. Cryobiology. 1985 Apr;22(2):128–146. doi: 10.1016/0011-2240(85)90167-1. [DOI] [PubMed] [Google Scholar]
  27. Rapaport D., Shai Y. Interaction of fluorescently labeled pardaxin and its analogues with lipid bilayers. J Biol Chem. 1991 Dec 15;266(35):23769–23775. [PubMed] [Google Scholar]
  28. Rubinsky B., Arav A., Fletcher G. L. Hypothermic protection--a fundamental property of "antifreeze" proteins. Biochem Biophys Res Commun. 1991 Oct 31;180(2):566–571. doi: 10.1016/s0006-291x(05)81102-7. [DOI] [PubMed] [Google Scholar]
  29. Rubinsky B., Arav A., Mattioli M., Devries A. L. The effect of antifreeze glycopeptides on membrane potential changes at hypothermic temperatures. Biochem Biophys Res Commun. 1990 Dec 31;173(3):1369–1374. doi: 10.1016/s0006-291x(05)80939-8. [DOI] [PubMed] [Google Scholar]
  30. Sidebottom C., Buckley S., Pudney P., Twigg S., Jarman C., Holt C., Telford J., McArthur A., Worrall D., Hubbard R. Heat-stable antifreeze protein from grass. Nature. 2000 Jul 20;406(6793):256–256. doi: 10.1038/35018639. [DOI] [PubMed] [Google Scholar]
  31. Tablin F., Oliver A. E., Walker N. J., Crowe L. M., Crowe J. H. Membrane phase transition of intact human platelets: correlation with cold-induced activation. J Cell Physiol. 1996 Aug;168(2):305–313. doi: 10.1002/(SICI)1097-4652(199608)168:2<305::AID-JCP9>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  32. Tamm L. K. Membrane insertion and lateral mobility of synthetic amphiphilic signal peptides in lipid model membranes. Biochim Biophys Acta. 1991 Jul 22;1071(2):123–148. doi: 10.1016/0304-4157(91)90021-n. [DOI] [PubMed] [Google Scholar]
  33. Tomczak M. M., Hincha D. K., Estrada S. D., Feeney R. E., Crowe J. H. Antifreeze proteins differentially affect model membranes during freezing. Biochim Biophys Acta. 2001 Apr 2;1511(2):255–263. doi: 10.1016/s0005-2736(01)00281-4. [DOI] [PubMed] [Google Scholar]
  34. Tsvetkova N. M., Crowe J. H., Walker N. J., Crowe L. M., Oliver A. E., Wolkers W. F., Tablin F. Physical properties of membrane fractions isolated from human platelets: implications for chilling induced platelet activation. Mol Membr Biol. 1999 Jul-Sep;16(3):265–272. doi: 10.1080/096876899294580. [DOI] [PubMed] [Google Scholar]
  35. Urrutia M. E., Duman J. G., Knight C. A. Plant thermal hysteresis proteins. Biochim Biophys Acta. 1992 May 22;1121(1-2):199–206. doi: 10.1016/0167-4838(92)90355-h. [DOI] [PubMed] [Google Scholar]
  36. White J. G., Krivit W. An ultrastructural basis for the shape changes induced in platelets by chilling. Blood. 1967 Nov;30(5):625–635. [PubMed] [Google Scholar]
  37. Worrall D., Elias L., Ashford D., Smallwood M., Sidebottom C., Lillford P., Telford J., Holt C., Bowles D. A carrot leucine-rich-repeat protein that inhibits ice recrystallization. Science. 1998 Oct 2;282(5386):115–117. doi: 10.1126/science.282.5386.115. [DOI] [PubMed] [Google Scholar]
  38. Wu Y., Fletcher G. L. Efficacy of antifreeze protein types in protecting liposome membrane integrity depends on phospholipid class. Biochim Biophys Acta. 2001 Nov 15;1524(1):11–16. doi: 10.1016/s0304-4165(00)00134-3. [DOI] [PubMed] [Google Scholar]
  39. Yang D. S., Sax M., Chakrabartty A., Hew C. L. Crystal structure of an antifreeze polypeptide and its mechanistic implications. Nature. 1988 May 19;333(6170):232–237. doi: 10.1038/333232a0. [DOI] [PubMed] [Google Scholar]
  40. ZUCKER M. B., BORRELLI J. Reversible alterations in platelet morphology produced by anticoagulants and by cold. Blood. 1954 Jun;9(6):602–608. [PubMed] [Google Scholar]
  41. Zhan H. A method for quick measurement of protein binding to unilamellar vesicles. J Biochem Biophys Methods. 1999 Aug 30;41(1):13–19. doi: 10.1016/s0165-022x(99)00030-5. [DOI] [PubMed] [Google Scholar]
  42. Zhang W., Laursen R. A. Structure-function relationships in a type I antifreeze polypeptide. The role of threonine methyl and hydroxyl groups in antifreeze activity. J Biol Chem. 1998 Dec 25;273(52):34806–34812. doi: 10.1074/jbc.273.52.34806. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES