Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Feb;82(2):963–977. doi: 10.1016/S0006-3495(02)75456-8

The 7.5-A electron density and spectroscopic properties of a novel low-light B800 LH2 from Rhodopseudomonas palustris.

Nichola Hartigan 1, Hazel A Tharia 1, Frank Sweeney 1, Anna M Lawless 1, Miroslav Z Papiz 1
PMCID: PMC1301903  PMID: 11806936

Abstract

A novel low-light (LL) adapted light-harvesting complex II has been isolated from Rhodopseudomonas palustris. Previous work has identified a LL B800-850 complex with a heterogeneous peptide composition and reduced absorption at 850 nm. The work presented here shows the 850 nm absorption to be contamination from a high-light B800-850 complex and that the true LL light-harvesting complex II is a novel B800 complex composed of eight alpha beta(d) peptide pairs that exhibits unique absorption and circular dichroism near infrared spectra. Biochemical analysis shows there to be four bacteriochlorophyll molecules per alpha beta peptide rather than the usual three. The electron density of the complex at 7.5 A resolution shows it to be an octamer with exact 8-fold rotational symmetry. A number of bacteriochlorophyll geometries have been investigated by simulation of the circular dichroism and absorption spectra and compared, for consistency, with the electron density. Modeling of the spectra suggests that the B850 bacteriochlorophylls may be arranged in a radial direction rather than the usual tangential arrangement found in B800-850 complexes.

Full Text

The Full Text of this article is available as a PDF (560.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cowtan K. D., Main P. Improvement of macromolecular electron-density maps by the simultaneous application of real and reciprocal space constraints. Acta Crystallogr D Biol Crystallogr. 1993 Jan 1;49(Pt 1):148–157. doi: 10.1107/S0907444992007698. [DOI] [PubMed] [Google Scholar]
  2. Cupane A., Leone M., Vitrano E., Cordone L. Low temperature optical absorption spectroscopy: an approach to the study of stereodynamic properties of hemeproteins. Eur Biophys J. 1995;23(6):385–398. doi: 10.1007/BF00196825. [DOI] [PubMed] [Google Scholar]
  3. Fowler G. J., Sockalingum G. D., Robert B., Hunter C. N. Blue shifts in bacteriochlorophyll absorbance correlate with changed hydrogen bonding patterns in light-harvesting 2 mutants of Rhodobacter sphaeroides with alterations at alpha-Tyr-44 and alpha-Tyr-45. Biochem J. 1994 May 1;299(Pt 3):695–700. doi: 10.1042/bj2990695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Freer A., Prince S., Sauer K., Papiz M., Hawthornthwaite-Lawless A., McDermott G., Cogdell R., Isaacs N. W. Pigment-pigment interactions and energy transfer in the antenna complex of the photosynthetic bacterium Rhodopseudomonas acidophila. Structure. 1996 Apr 15;4(4):449–462. doi: 10.1016/s0969-2126(96)00050-0. [DOI] [PubMed] [Google Scholar]
  5. Gall A., Robert B. Characterization of the different peripheral light-harvesting complexes from high- and low-light grown cells from Rhodopseudomonas palustris. Biochemistry. 1999 Apr 20;38(16):5185–5190. doi: 10.1021/bi982486q. [DOI] [PubMed] [Google Scholar]
  6. Hess S., Chachisvilis M., Timpmann K., Jones M. R., Fowler G. J., Hunter C. N., Sundström V. Temporally and spectrally resolved subpicosecond energy transfer within the peripheral antenna complex (LH2) and from LH2 to the core antenna complex in photosynthetic purple bacteria. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12333–12337. doi: 10.1073/pnas.92.26.12333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  8. Karrasch S., Bullough P. A., Ghosh R. The 8.5 A projection map of the light-harvesting complex I from Rhodospirillum rubrum reveals a ring composed of 16 subunits. EMBO J. 1995 Feb 15;14(4):631–638. doi: 10.1002/j.1460-2075.1995.tb07041.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kerfeld C. A., Yeates T. O., Thornber J. P. Purification and characterization of the peripheral antenna of the purple-sulfur bacterium Chromatium purpuratum: evidence of an unusual pigment-protein composition. Biochemistry. 1994 Mar 1;33(8):2178–2184. doi: 10.1021/bi00174a026. [DOI] [PubMed] [Google Scholar]
  10. Kissinger C. R., Gehlhaar D. K., Fogel D. B. Rapid automated molecular replacement by evolutionary search. Acta Crystallogr D Biol Crystallogr. 1999 Feb;55(Pt 2):484–491. doi: 10.1107/s0907444998012517. [DOI] [PubMed] [Google Scholar]
  11. Koepke J., Hu X., Muenke C., Schulten K., Michel H. The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. Structure. 1996 May 15;4(5):581–597. doi: 10.1016/s0969-2126(96)00063-9. [DOI] [PubMed] [Google Scholar]
  12. Koolhaus M. H., Frese R. N., Fowler G. J., Bibby T. S., Georgakopoulou S., van der Zwan G., Hunter C. N., van Grondelle R. Identification of the upper exciton component of the B850 bacteriochlorophylls of the LH2 antenna complex, using a B800-free mutant of Rhodobacter sphaeroides. Biochemistry. 1998 Apr 7;37(14):4693–4698. doi: 10.1021/bi973036l. [DOI] [PubMed] [Google Scholar]
  13. Leupold D, Stiel H, Teuchner K, Nowak F, Sandner W, Ücker B, Scheer H. Size Enhancement of Transition Dipoles to One- and Two-Exciton Bands in a Photosynthetic Antenna. Phys Rev Lett. 1996 Nov 25;77(22):4675–4678. doi: 10.1103/PhysRevLett.77.4675. [DOI] [PubMed] [Google Scholar]
  14. McLuskey K., Prince S. M., Cogdell R. J., Isaacs N. W. Crystallization and preliminary x-ray crystallographic analysis of the B800-820 light-harvesting complex from Rhodopseudomonas acidophila strain 7050. Acta Crystallogr D Biol Crystallogr. 1999 Apr;55(Pt 4):885–887. doi: 10.1107/s0907444998016059. [DOI] [PubMed] [Google Scholar]
  15. Nagarajan V., Alden R. G., Williams J. C., Parson W. W. Ultrafast exciton relaxation in the B850 antenna complex of Rhodobacter sphaeroides. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13774–13779. doi: 10.1073/pnas.93.24.13774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nagarajan V., Parson W. W. Excitation energy transfer between the B850 and B875 antenna complexes of Rhodobacter sphaeroides. Biochemistry. 1997 Feb 25;36(8):2300–2306. doi: 10.1021/bi962534b. [DOI] [PubMed] [Google Scholar]
  17. Nishimura Y., Shimada K., Yamazaki I., Mimuro M. Energy transfer processes in Rhodopseudomonas palustris grown under low-light conditions. Heterogeneous composition of LH 2 complexes and parallel energy flow pathways. FEBS Lett. 1993 Aug 30;329(3):319–323. doi: 10.1016/0014-5793(93)80245-p. [DOI] [PubMed] [Google Scholar]
  18. Sturgis J. N., Jirsakova V., Reiss-Husson F., Cogdell R. J., Robert B. Structure and properties of the bacteriochlorophyll binding site in peripheral light-harvesting complexes of purple bacteria. Biochemistry. 1995 Jan 17;34(2):517–523. doi: 10.1021/bi00002a016. [DOI] [PubMed] [Google Scholar]
  19. Tadros M. H., Katsiou E., Hoon M. A., Yurkova N., Ramji D. P. Cloning of a new antenna gene cluster and expression analysis of the antenna gene family of Rhodopseudomonas palustris. Eur J Biochem. 1993 Nov 1;217(3):867–875. doi: 10.1111/j.1432-1033.1993.tb18315.x. [DOI] [PubMed] [Google Scholar]
  20. Visser H. M., Somsen O. J., van Mourik F., Lin S., van Stokkum I. H., van Grondelle R. Direct observation of sub-picosecond equilibration of excitation energy in the light-harvesting antenna of Rhodospirillum rubrum. Biophys J. 1995 Sep;69(3):1083–1099. doi: 10.1016/S0006-3495(95)79982-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Zhang F. G., van Grondelle R., Sundström V. Pathways of energy flow through the light-harvesting antenna of the photosynthetic purple bacterium rhodobacter sphaeroides. Biophys J. 1992 Apr;61(4):911–920. doi: 10.1016/S0006-3495(92)81898-2. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES