Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Feb;82(2):1030–1039. doi: 10.1016/S0006-3495(02)75462-3

Excitonic coupling of chlorophylls in the plant light-harvesting complex LHC-II.

Axel Schubert 1, Wichard J D Beenken 1, Holger Stiel 1, Bernd Voigt 1, Dieter Leupold 1, Heiko Lokstein 1
PMCID: PMC1301909  PMID: 11806942

Abstract

Manifestation and extent of excitonic interactions in the red Chl-absorption region (Q(y) band) of trimeric LHC-II were investigated using two complementary nonlinear laser-spectroscopic techniques. Nonlinear absorption of 120-fs pulses indicates an increased absorption cross section in the red wing of the Q(y) band as compared to monomeric Chl a in organic solution. Additionally, the dependence of a nonlinear polarization response on the pump-field intensity was investigated. This approach reveals that one emitting spectral form, characterized by a 2.3(+/-0.8)-fold larger dipole strength than monomeric Chl a, dominates the fluorescence spectrum of LHC-II. Considering available structural and spectroscopic data, these results can be consistently explained assuming the existence of an excitonically coupled dimer located at Chl-bindings sites a2 and b2 (referring to the original notation of W. Nühlbrandt, D.N. Wang, and Y. Fujiyoshi, Nature, 1994, 367:614-621), which must not necessarily correspond to Chls a and b). This fluorescent dimer, terminating the excitation energy-transfer chain of the LHC-II monomeric subunit, is discussed with respect to its relevance for intra- and inter-antenna excitation energy transfer.

Full Text

The Full Text of this article is available as a PDF (180.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Gradinaru C. C., Ozdemir S., Gülen D., van Stokkum I. H., van Grondelle R., van Amerongen H. The flow of excitation energy in LHCII monomers: implications for the structural model of the major plant antenna. Biophys J. 1998 Dec;75(6):3064–3077. doi: 10.1016/S0006-3495(98)77747-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Kleima F. J., Wendling M., Hofmann E., Peterman E. J., van Grondelle R., van Amerongen H. Peridinin chlorophyll a protein: relating structure and steady-state spectroscopy. Biochemistry. 2000 May 2;39(17):5184–5195. doi: 10.1021/bi992427s. [DOI] [PubMed] [Google Scholar]
  3. Krupa Z., Huner N. P., Williams J. P., Maissan E., James D. R. Development at Cold-Hardening Temperatures : The Structure and Composition of Purified Rye Light Harvesting Complex II. Plant Physiol. 1987 May;84(1):19–24. doi: 10.1104/pp.84.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kühlbrandt W., Wang D. N., Fujiyoshi Y. Atomic model of plant light-harvesting complex by electron crystallography. Nature. 1994 Feb 17;367(6464):614–621. doi: 10.1038/367614a0. [DOI] [PubMed] [Google Scholar]
  5. Leupold D, Stiel H, Teuchner K, Nowak F, Sandner W, Ücker B, Scheer H. Size Enhancement of Transition Dipoles to One- and Two-Exciton Bands in a Photosynthetic Antenna. Phys Rev Lett. 1996 Nov 25;77(22):4675–4678. doi: 10.1103/PhysRevLett.77.4675. [DOI] [PubMed] [Google Scholar]
  6. Lokstein H., Leupold D., Voigt B., Nowak F., Ehlert J., Hoffmann P., Garab G. Nonlinear polarization spectroscopy in the frequency domain of light-harvesting complex II: absorption band substructure and exciton dynamics. Biophys J. 1995 Oct;69(4):1536–1543. doi: 10.1016/S0006-3495(95)80025-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Nishigaki A., Ohshima S., Nakayama K., Okada M., Nagashima U. Application of molecular orbital calculations to interpret the chlorophyll spectral forms in pea photosystem II. Photochem Photobiol. 2001 Mar;73(3):245–248. doi: 10.1562/0031-8655(2001)073<0245:aomoct>2.0.co;2. [DOI] [PubMed] [Google Scholar]
  8. Nussberger S., Dekker J. P., Kühlbrandt W., van Bolhuis B. M., van Grondelle R., van Amerongen H. Spectroscopic characterization of three different monomeric forms of the main chlorophyll a/b binding protein from chloroplast membranes. Biochemistry. 1994 Dec 13;33(49):14775–14783. doi: 10.1021/bi00253a016. [DOI] [PubMed] [Google Scholar]
  9. Remelli R., Varotto C., Sandonà D., Croce R., Bassi R. Chlorophyll binding to monomeric light-harvesting complex. A mutation analysis of chromophore-binding residues. J Biol Chem. 1999 Nov 19;274(47):33510–33521. doi: 10.1074/jbc.274.47.33510. [DOI] [PubMed] [Google Scholar]
  10. Rogl H., Kühlbrandt W. Mutant trimers of light-harvesting complex II exhibit altered pigment content and spectroscopic features. Biochemistry. 1999 Dec 7;38(49):16214–16222. doi: 10.1021/bi990739p. [DOI] [PubMed] [Google Scholar]
  11. Simonetto R., Crimi M., Sandonà D., Croce R., Cinque G., Breton J., Bassi R. Orientation of chlorophyll transition moments in the higher-plant light-harvesting complex CP29. Biochemistry. 1999 Oct 5;38(40):12974–12983. doi: 10.1021/bi991140s. [DOI] [PubMed] [Google Scholar]
  12. Tietz C., Jelezko F., Gerken U., Schuler S., Schubert A., Rogl H., Wrachtrup J. Single molecule spectroscopy on the light-harvesting complex II of higher plants. Biophys J. 2001 Jul;81(1):556–562. doi: 10.1016/S0006-3495(01)75722-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Zucchelli G., Garlaschi F. M., Jennings R. C. Thermal broadening analysis of the light harvesting complex II absorption spectrum. Biochemistry. 1996 Dec 17;35(50):16247–16254. doi: 10.1021/bi9613178. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES