Abstract
Manifestation and extent of excitonic interactions in the red Chl-absorption region (Q(y) band) of trimeric LHC-II were investigated using two complementary nonlinear laser-spectroscopic techniques. Nonlinear absorption of 120-fs pulses indicates an increased absorption cross section in the red wing of the Q(y) band as compared to monomeric Chl a in organic solution. Additionally, the dependence of a nonlinear polarization response on the pump-field intensity was investigated. This approach reveals that one emitting spectral form, characterized by a 2.3(+/-0.8)-fold larger dipole strength than monomeric Chl a, dominates the fluorescence spectrum of LHC-II. Considering available structural and spectroscopic data, these results can be consistently explained assuming the existence of an excitonically coupled dimer located at Chl-bindings sites a2 and b2 (referring to the original notation of W. Nühlbrandt, D.N. Wang, and Y. Fujiyoshi, Nature, 1994, 367:614-621), which must not necessarily correspond to Chls a and b). This fluorescent dimer, terminating the excitation energy-transfer chain of the LHC-II monomeric subunit, is discussed with respect to its relevance for intra- and inter-antenna excitation energy transfer.
Full Text
The Full Text of this article is available as a PDF (180.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Gradinaru C. C., Ozdemir S., Gülen D., van Stokkum I. H., van Grondelle R., van Amerongen H. The flow of excitation energy in LHCII monomers: implications for the structural model of the major plant antenna. Biophys J. 1998 Dec;75(6):3064–3077. doi: 10.1016/S0006-3495(98)77747-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kleima F. J., Wendling M., Hofmann E., Peterman E. J., van Grondelle R., van Amerongen H. Peridinin chlorophyll a protein: relating structure and steady-state spectroscopy. Biochemistry. 2000 May 2;39(17):5184–5195. doi: 10.1021/bi992427s. [DOI] [PubMed] [Google Scholar]
- Krupa Z., Huner N. P., Williams J. P., Maissan E., James D. R. Development at Cold-Hardening Temperatures : The Structure and Composition of Purified Rye Light Harvesting Complex II. Plant Physiol. 1987 May;84(1):19–24. doi: 10.1104/pp.84.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kühlbrandt W., Wang D. N., Fujiyoshi Y. Atomic model of plant light-harvesting complex by electron crystallography. Nature. 1994 Feb 17;367(6464):614–621. doi: 10.1038/367614a0. [DOI] [PubMed] [Google Scholar]
- Leupold D, Stiel H, Teuchner K, Nowak F, Sandner W, Ücker B, Scheer H. Size Enhancement of Transition Dipoles to One- and Two-Exciton Bands in a Photosynthetic Antenna. Phys Rev Lett. 1996 Nov 25;77(22):4675–4678. doi: 10.1103/PhysRevLett.77.4675. [DOI] [PubMed] [Google Scholar]
- Lokstein H., Leupold D., Voigt B., Nowak F., Ehlert J., Hoffmann P., Garab G. Nonlinear polarization spectroscopy in the frequency domain of light-harvesting complex II: absorption band substructure and exciton dynamics. Biophys J. 1995 Oct;69(4):1536–1543. doi: 10.1016/S0006-3495(95)80025-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nishigaki A., Ohshima S., Nakayama K., Okada M., Nagashima U. Application of molecular orbital calculations to interpret the chlorophyll spectral forms in pea photosystem II. Photochem Photobiol. 2001 Mar;73(3):245–248. doi: 10.1562/0031-8655(2001)073<0245:aomoct>2.0.co;2. [DOI] [PubMed] [Google Scholar]
- Nussberger S., Dekker J. P., Kühlbrandt W., van Bolhuis B. M., van Grondelle R., van Amerongen H. Spectroscopic characterization of three different monomeric forms of the main chlorophyll a/b binding protein from chloroplast membranes. Biochemistry. 1994 Dec 13;33(49):14775–14783. doi: 10.1021/bi00253a016. [DOI] [PubMed] [Google Scholar]
- Remelli R., Varotto C., Sandonà D., Croce R., Bassi R. Chlorophyll binding to monomeric light-harvesting complex. A mutation analysis of chromophore-binding residues. J Biol Chem. 1999 Nov 19;274(47):33510–33521. doi: 10.1074/jbc.274.47.33510. [DOI] [PubMed] [Google Scholar]
- Rogl H., Kühlbrandt W. Mutant trimers of light-harvesting complex II exhibit altered pigment content and spectroscopic features. Biochemistry. 1999 Dec 7;38(49):16214–16222. doi: 10.1021/bi990739p. [DOI] [PubMed] [Google Scholar]
- Simonetto R., Crimi M., Sandonà D., Croce R., Cinque G., Breton J., Bassi R. Orientation of chlorophyll transition moments in the higher-plant light-harvesting complex CP29. Biochemistry. 1999 Oct 5;38(40):12974–12983. doi: 10.1021/bi991140s. [DOI] [PubMed] [Google Scholar]
- Tietz C., Jelezko F., Gerken U., Schuler S., Schubert A., Rogl H., Wrachtrup J. Single molecule spectroscopy on the light-harvesting complex II of higher plants. Biophys J. 2001 Jul;81(1):556–562. doi: 10.1016/S0006-3495(01)75722-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zucchelli G., Garlaschi F. M., Jennings R. C. Thermal broadening analysis of the light harvesting complex II absorption spectrum. Biochemistry. 1996 Dec 17;35(50):16247–16254. doi: 10.1021/bi9613178. [DOI] [PubMed] [Google Scholar]