Abstract
Antithrombin is a key inhibitor of blood coagulation proteases and a prototype metastable protein. Heparin binding to antithrombin induces conformational transitions distal to the binding site. We applied osmotic stress techniques and rate measurements in the stopped flow fluorometer to investigate the possibility that hydration changes are associated with these transitions. Water transfer was identified from changes in the free energy of activation, Delta G(++), with osmotic pressure pi. The Delta G(++) was determined from the rate of fluorescence enhancement/decrease associated with heparin binding/release. The volume of water transferred, Delta V, was determined from the relationship, Delta G/pi = Delta V. With an osmotic probe of 4 A radius, the volumes transferred correspond to 158 +/- 11 water molecules from reactants to bulk during association and 162 +/- 22 from bulk to reactants during dissociation. Analytical characterization of water-permeable volumes in x-ray-derived bound and free antithrombin structures were correlated with the volumes measured in solution. Volume changes in water permeable pockets were identified at the loop-insertion and heparin-binding regions. Analyses of the pockets' atomic composition indicate that residues Ser-79, Ala-86, Val-214, Leu-215, Asn-217, Ile-219, and Thr-218 contribute atoms to both the heparin-binding pockets and to the loop-insertion region. These results demonstrate that the increases and decreases in the intrinsic fluorescence of antithrombin during heparin binding and release are linked to dehydration and hydration reactions, respectively. Together with the structural analyses, results also suggest a direct mechanism linking heparin binding/release to loop expulsion/insertion.
Full Text
The Full Text of this article is available as a PDF (320.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arakawa T., Timasheff S. N. Mechanism of poly(ethylene glycol) interaction with proteins. Biochemistry. 1985 Nov 19;24(24):6756–6762. doi: 10.1021/bi00345a005. [DOI] [PubMed] [Google Scholar]
- Atha D. H., Ingham K. C. Mechanism of precipitation of proteins by polyethylene glycols. Analysis in terms of excluded volume. J Biol Chem. 1981 Dec 10;256(23):12108–12117. [PubMed] [Google Scholar]
- Beauchamp N. J., Pike R. N., Daly M., Butler L., Makris M., Dafforn T. R., Zhou A., Fitton H. L., Preston F. E., Peake I. R. Antithrombins Wibble and Wobble (T85M/K): archetypal conformational diseases with in vivo latent-transition, thrombosis, and heparin activation. Blood. 1998 Oct 15;92(8):2696–2706. [PubMed] [Google Scholar]
- Bryant R. G. The dynamics of water-protein interactions. Annu Rev Biophys Biomol Struct. 1996;25:29–53. doi: 10.1146/annurev.bb.25.060196.000333. [DOI] [PubMed] [Google Scholar]
- Carrell R. W., Evans D. L., Stein P. E. Mobile reactive centre of serpins and the control of thrombosis. Nature. 1991 Oct 10;353(6344):576–578. doi: 10.1038/353576a0. [DOI] [PubMed] [Google Scholar]
- Colombo M. F., Rau D. C., Parsegian V. A. Protein solvation in allosteric regulation: a water effect on hemoglobin. Science. 1992 May 1;256(5057):655–659. doi: 10.1126/science.1585178. [DOI] [PubMed] [Google Scholar]
- Craig P. A., Olson S. T., Shore J. D. Transient kinetics of heparin-catalyzed protease inactivation by antithrombin III. Characterization of assembly, product formation, and heparin dissociation steps in the factor Xa reaction. J Biol Chem. 1989 Apr 5;264(10):5452–5461. [PubMed] [Google Scholar]
- Desai U. R., Petitou M., Björk I., Olson S. T. Mechanism of heparin activation of antithrombin: evidence for an induced-fit model of allosteric activation involving two interaction subsites. Biochemistry. 1998 Sep 15;37(37):13033–13041. doi: 10.1021/bi981426h. [DOI] [PubMed] [Google Scholar]
- Douzou P. Osmotic regulation of gene action. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1657–1661. doi: 10.1073/pnas.91.5.1657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ersdal-Badju E., Lu A., Zuo Y., Picard V., Bock S. C. Identification of the antithrombin III heparin binding site. J Biol Chem. 1997 Aug 1;272(31):19393–19400. doi: 10.1074/jbc.272.31.19393. [DOI] [PubMed] [Google Scholar]
- Futamura A., Gettins P. G. Serine 380 (P14) --> glutamate mutation activates antithrombin as an inhibitor of factor Xa. J Biol Chem. 2000 Feb 11;275(6):4092–4098. doi: 10.1074/jbc.275.6.4092. [DOI] [PubMed] [Google Scholar]
- Huntington J. A., Olson S. T., Fan B., Gettins P. G. Mechanism of heparin activation of antithrombin. Evidence for reactive center loop preinsertion with expulsion upon heparin binding. Biochemistry. 1996 Jul 2;35(26):8495–8503. doi: 10.1021/bi9604643. [DOI] [PubMed] [Google Scholar]
- Jin L., Abrahams J. P., Skinner R., Petitou M., Pike R. N., Carrell R. W. The anticoagulant activation of antithrombin by heparin. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14683–14688. doi: 10.1073/pnas.94.26.14683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jordan R. E., Oosta G. M., Gardner W. T., Rosenberg R. D. The kinetics of hemostatic enzyme-antithrombin interactions in the presence of low molecular weight heparin. J Biol Chem. 1980 Nov 10;255(21):10081–10090. [PubMed] [Google Scholar]
- Knoll D., Hermans J. Polymer-protein interactions. Comparison of experiment and excluded volume theory. J Biol Chem. 1983 May 10;258(9):5710–5715. [PubMed] [Google Scholar]
- Kvassman J. O., Verhamme I., Shore J. D. Inhibitory mechanism of serpins: loop insertion forces acylation of plasminogen activator by plasminogen activator inhibitor-1. Biochemistry. 1998 Nov 3;37(44):15491–15502. doi: 10.1021/bi9814787. [DOI] [PubMed] [Google Scholar]
- Lane D. A., Olds R. R., Thein S. L. Antithrombin and its deficiency states. Blood Coagul Fibrinolysis. 1992 Jun;3(3):315–341. doi: 10.1097/00001721-199206000-00012. [DOI] [PubMed] [Google Scholar]
- Lawrence D. A. The serpin-proteinase complex revealed. Nat Struct Biol. 1997 May;4(5):339–341. doi: 10.1038/nsb0597-339. [DOI] [PubMed] [Google Scholar]
- Lee K. N., Im H., Kang S. W., Yu M. H. Characterization of a human alpha1-antitrypsin variant that is as stable as ovalbumin. J Biol Chem. 1998 Jan 30;273(5):2509–2516. doi: 10.1074/jbc.273.5.2509. [DOI] [PubMed] [Google Scholar]
- Liang J., Edelsbrunner H., Fu P., Sudhakar P. V., Subramaniam S. Analytical shape computation of macromolecules: I. Molecular area and volume through alpha shape. Proteins. 1998 Oct 1;33(1):1–17. [PubMed] [Google Scholar]
- Liang J., Edelsbrunner H., Woodward C. Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Sci. 1998 Sep;7(9):1884–1897. doi: 10.1002/pro.5560070905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liang J., McGee M. P. Hydration structure of antithrombin conformers and water transfer during reactive loop insertion. Biophys J. 1998 Aug;75(2):573–582. doi: 10.1016/S0006-3495(98)77548-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Low P. S., Somero G. N. Protein hydration changes during catalysis: a new mechanism of enzymic rate-enhancement and ion activation/inhibition of catalysis. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3305–3309. doi: 10.1073/pnas.72.9.3305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meagher J. L., Beechem J. M., Olson S. T., Gettins P. G. Deconvolution of the fluorescence emission spectrum of human antithrombin and identification of the tryptophan residues that are responsive to heparin binding. J Biol Chem. 1998 Sep 4;273(36):23283–23289. doi: 10.1074/jbc.273.36.23283. [DOI] [PubMed] [Google Scholar]
- Olson S. T., Björk I., Shore J. D. Kinetic characterization of heparin-catalyzed and uncatalyzed inhibition of blood coagulation proteinases by antithrombin. Methods Enzymol. 1993;222:525–559. doi: 10.1016/0076-6879(93)22033-c. [DOI] [PubMed] [Google Scholar]
- Olson S. T., Shore J. D. Binding of high affinity heparin to antithrombin III. Characterization of the protein fluorescence enhancement. J Biol Chem. 1981 Nov 10;256(21):11065–11072. [PubMed] [Google Scholar]
- Parsegian V. A., Rand R. P., Fuller N. L., Rau D. C. Osmotic stress for the direct measurement of intermolecular forces. Methods Enzymol. 1986;127:400–416. doi: 10.1016/0076-6879(86)27032-9. [DOI] [PubMed] [Google Scholar]
- Parsegian V. A., Rand R. P., Rau D. C. Osmotic stress, crowding, preferential hydration, and binding: A comparison of perspectives. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):3987–3992. doi: 10.1073/pnas.97.8.3987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parthasarathy N., Goldberg I. J., Sivaram P., Mulloy B., Flory D. M., Wagner W. D. Oligosaccharide sequences of endothelial cell surface heparan sulfate proteoglycan with affinity for lipoprotein lipase. J Biol Chem. 1994 Sep 2;269(35):22391–22396. [PubMed] [Google Scholar]
- Rand R. P. Raising water to new heights. Science. 1992 May 1;256(5057):618–618. doi: 10.1126/science.256.5057.618. [DOI] [PubMed] [Google Scholar]
- Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
- Schreuder H. A., de Boer B., Dijkema R., Mulders J., Theunissen H. J., Grootenhuis P. D., Hol W. G. The intact and cleaved human antithrombin III complex as a model for serpin-proteinase interactions. Nat Struct Biol. 1994 Jan;1(1):48–54. doi: 10.1038/nsb0194-48. [DOI] [PubMed] [Google Scholar]
- Skinner R., Abrahams J. P., Whisstock J. C., Lesk A. M., Carrell R. W., Wardell M. R. The 2.6 A structure of antithrombin indicates a conformational change at the heparin binding site. J Mol Biol. 1997 Feb 28;266(3):601–609. doi: 10.1006/jmbi.1996.0798. [DOI] [PubMed] [Google Scholar]
- Skinner R., Chang W. S., Jin L., Pei X., Huntington J. A., Abrahams J. P., Carrell R. W., Lomas D. A. Implications for function and therapy of a 2.9 A structure of binary-complexed antithrombin. J Mol Biol. 1998;283(1):9–14. doi: 10.1006/jmbi.1998.2083. [DOI] [PubMed] [Google Scholar]
- Stratikos E., Gettins P. G. Formation of the covalent serpin-proteinase complex involves translocation of the proteinase by more than 70 A and full insertion of the reactive center loop into beta-sheet A. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):4808–4813. doi: 10.1073/pnas.96.9.4808. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsiang M., Jain A. K., Gibbs C. S. Functional requirements for inhibition of thrombin by antithrombin III in the presence and absence of heparin. J Biol Chem. 1997 May 2;272(18):12024–12029. doi: 10.1074/jbc.272.18.12024. [DOI] [PubMed] [Google Scholar]
- Wilczynska M., Fa M., Karolin J., Ohlsson P. I., Johansson L. B., Ny T. Structural insights into serpin-protease complexes reveal the inhibitory mechanism of serpins. Nat Struct Biol. 1997 May;4(5):354–357. doi: 10.1038/nsb0597-354. [DOI] [PubMed] [Google Scholar]
- Zhou A., Huntington J. A., Carrell R. W. Formation of the antithrombin heterodimer in vivo and the onset of thrombosis. Blood. 1999 Nov 15;94(10):3388–3396. [PubMed] [Google Scholar]
