Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Feb;82(2):1068–1075. doi: 10.1016/S0006-3495(02)75466-0

C-deuterated alanine: a new label to study membrane protein structure using site-specific infrared dichroism.

Jaume Torres 1, Isaiah T Arkin 1
PMCID: PMC1301913  PMID: 11806946

Abstract

The helix tilt and rotational orientation of the transmembrane segment of M2, a 97-residue protein from the Influenza A virus that forms H(+)-selective ion channels, have been determined by attenuated total reflection site-specific infrared dichroism using a novel labeling approach. Triple C-deuteration of the methyl group of alanine in the transmembrane domain of M2 was used, as such modification shifts the asymmetric and symmetric stretching vibrations of the methyl group to a transparent region of the infrared spectrum. Structural information can then be obtained from the dichroic ratios corresponding to these two vibrations. Two consecutive alanine residues were labeled to enhance signal intensity. The results obtained herein are entirely consistent with previous site-specific infrared dichroism and solid-state nuclear magnetic resonance experiments, validating C-deuterated alanine as an infrared structural probe that can be used in membrane proteins. This new label adds to the previously reported (13)C [double bond] (18)O and C-deuterated glycine as a tool to analyze the structure of simple transmembrane segments and will also increase the feasibility of the study of polytopic membrane proteins with site-specific infrared dichroism.

Full Text

The Full Text of this article is available as a PDF (269.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arkin I. T., Brunger A. T. Statistical analysis of predicted transmembrane alpha-helices. Biochim Biophys Acta. 1998 Dec 8;1429(1):113–128. doi: 10.1016/s0167-4838(98)00225-8. [DOI] [PubMed] [Google Scholar]
  2. Brünger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M., Pannu N. S. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905–921. doi: 10.1107/s0907444998003254. [DOI] [PubMed] [Google Scholar]
  3. Kalnin N. N., Baikalov I. A., Venyaminov SYu Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. III. Estimation of the protein secondary structure. Biopolymers. 1990;30(13-14):1273–1280. doi: 10.1002/bip.360301311. [DOI] [PubMed] [Google Scholar]
  4. Kovacs F. A., Cross T. A. Transmembrane four-helix bundle of influenza A M2 protein channel: structural implications from helix tilt and orientation. Biophys J. 1997 Nov;73(5):2511–2517. doi: 10.1016/S0006-3495(97)78279-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Krimm S., Bandekar J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv Protein Chem. 1986;38:181–364. doi: 10.1016/s0065-3233(08)60528-8. [DOI] [PubMed] [Google Scholar]
  6. Kukol A., Adams P. D., Rice L. M., Brunger A. T., Arkin T. I. Experimentally based orientational refinement of membrane protein models: A structure for the Influenza A M2 H+ channel. J Mol Biol. 1999 Feb 26;286(3):951–962. doi: 10.1006/jmbi.1998.2512. [DOI] [PubMed] [Google Scholar]
  7. Kukol A., Arkin I. T. Structure of the influenza C virus CM2 protein transmembrane domain obtained by site-specific infrared dichroism and global molecular dynamics searching. J Biol Chem. 2000 Feb 11;275(6):4225–4229. doi: 10.1074/jbc.275.6.4225. [DOI] [PubMed] [Google Scholar]
  8. Kukol A., Arkin I. T. vpu transmembrane peptide structure obtained by site-specific fourier transform infrared dichroism and global molecular dynamics searching. Biophys J. 1999 Sep;77(3):1594–1601. doi: 10.1016/S0006-3495(99)77007-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Marsh D., Müller M., Schmitt F. J. Orientation of the infrared transition moments for an alpha-helix. Biophys J. 2000 May;78(5):2499–2510. doi: 10.1016/S0006-3495(00)76795-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Torres J., Adams P. D., Arkin I. T. Use of a new label, (13)==(18)O, in the determination of a structural model of phospholamban in a lipid bilayer. Spatial restraints resolve the ambiguity arising from interpretations of mutagenesis data. J Mol Biol. 2000 Jul 21;300(4):677–685. doi: 10.1006/jmbi.2000.3885. [DOI] [PubMed] [Google Scholar]
  11. Torres J., Kukol A., Arkin I. T. Use of a single glycine residue to determine the tilt and orientation of a transmembrane helix. A new structural label for infrared spectroscopy. Biophys J. 2000 Dec;79(6):3139–3143. doi: 10.1016/S0006-3495(00)76547-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Venyaminov SYu, Kalnin N. N. Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. I. Spectral parameters of amino acid residue absorption bands. Biopolymers. 1990;30(13-14):1243–1257. doi: 10.1002/bip.360301309. [DOI] [PubMed] [Google Scholar]
  13. Wellings D. A., Atherton E. Standard Fmoc protocols. Methods Enzymol. 1997;289:44–67. doi: 10.1016/s0076-6879(97)89043-x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES